Computes correlation coefficients for all combinations of the specified variables. If no variables are specified, all numeric (integer or double) variables are used.
correlate(data, ..., method = "pearson", partial = NULL, with = NULL)
Variables to compute correlations for (column names). Leave empty to compute for all numeric variables in data.
a character string indicating which correlation coefficient is to be computed. One of "pearson" (default), "kendall", or "spearman"
Specifies a variable to be used as a control in a partial correlation.
By default, this parameter is set to NULL
, indicating that no control variable
is used in the correlation. If used, with
must be set to NULL
(default).
Specifies a focus variable to correlate all other variables with.
By default, this parameter is set to NULL
, indicating that no focus variable
is used in the correlation. If used, partial
must be set to NULL
(default).
a tdcmm model
WoJ %>% correlate(ethics_1, ethics_2, ethics_3)
#> # A tibble: 3 × 6
#> x y r df p n
#> * <chr> <chr> <dbl> <int> <dbl> <int>
#> 1 ethics_1 ethics_2 0.172 1198 2.04e- 9 1200
#> 2 ethics_1 ethics_3 0.165 1198 8.44e- 9 1200
#> 3 ethics_2 ethics_3 0.409 1198 1.05e-49 1200
WoJ %>% correlate()
#> # A tibble: 55 × 6
#> x y r df p n
#> * <chr> <chr> <dbl> <int> <dbl> <int>
#> 1 autonomy_selection autonomy_emphasis 0.644 1192 4.83e-141 1194
#> 2 autonomy_selection ethics_1 -0.0766 1195 7.98e- 3 1197
#> 3 autonomy_selection ethics_2 -0.0274 1195 3.43e- 1 1197
#> 4 autonomy_selection ethics_3 -0.0257 1195 3.73e- 1 1197
#> 5 autonomy_selection ethics_4 -0.0781 1195 6.89e- 3 1197
#> 6 autonomy_selection work_experience 0.161 1182 2.71e- 8 1184
#> 7 autonomy_selection trust_parliament -0.00840 1195 7.72e- 1 1197
#> 8 autonomy_selection trust_government 0.0414 1195 1.53e- 1 1197
#> 9 autonomy_selection trust_parties 0.0269 1195 3.52e- 1 1197
#> 10 autonomy_selection trust_politicians 0.0109 1195 7.07e- 1 1197
#> # ℹ 45 more rows
WoJ %>% correlate(ethics_1, ethics_2, ethics_3, with = work_experience)
#> # A tibble: 3 × 6
#> x y r df p n
#> * <chr> <chr> <dbl> <int> <dbl> <int>
#> 1 work_experience ethics_1 -0.103 1185 0.000387 1187
#> 2 work_experience ethics_2 -0.168 1185 0.00000000619 1187
#> 3 work_experience ethics_3 -0.0442 1185 0.128 1187
WoJ %>% correlate(autonomy_selection, autonomy_emphasis, partial = work_experience)
#> # A tibble: 1 × 7
#> x y z r df p n
#> * <chr> <chr> <chr> <dbl> <dbl> <dbl> <int>
#> 1 autonomy_selection autonomy_emphasis work_experie… 0.637 1178 3.07e-135 1181
WoJ %>% correlate(with = work_experience)
#> Warning: At least one of work_experience and country is not numeric, skipping computation.
#> Warning: At least one of work_experience and reach is not numeric, skipping computation.
#> Warning: At least one of work_experience and employment is not numeric, skipping computation.
#> Warning: At least one of work_experience and temp_contract is not numeric, skipping computation.
#> # A tibble: 10 × 6
#> x y r df p n
#> * <chr> <chr> <dbl> <int> <dbl> <int>
#> 1 work_experience autonomy_selection 0.161 1182 0.0000000271 1184
#> 2 work_experience autonomy_emphasis 0.155 1180 0.0000000887 1182
#> 3 work_experience ethics_1 -0.103 1185 0.000387 1187
#> 4 work_experience ethics_2 -0.168 1185 0.00000000619 1187
#> 5 work_experience ethics_3 -0.0442 1185 0.128 1187
#> 6 work_experience ethics_4 -0.116 1185 0.0000602 1187
#> 7 work_experience trust_parliament -0.00941 1185 0.746 1187
#> 8 work_experience trust_government -0.0708 1185 0.0146 1187
#> 9 work_experience trust_parties -0.0454 1185 0.118 1187
#> 10 work_experience trust_politicians -0.00976 1185 0.737 1187