
Studying News Use with
Computational Methods
Text Analysis in R, Part II: Topic Modeling

Julian Unkel
University of Konstanz
2021/06/28

1 / 59

Especially with large text corpora, we may want to
use methods to explore the textual content and
discover meaningful patterns. Unsupervised
machine learning methods structure text corpora
into latent classes without much user input.

Topic modeling describes one family of methods to
uncover such meaningful patterns in large text
corpora.

Our agenda today:

Topic models
Basics
Model fitting
Model selection
Model interpretation
Adding covariates

Keyword-assisted topic models
Defining a-priori topics
Model fitting
Model selection
Model interpretation

Validating topic models

Agenda

2 / 59

Topic models

3 / 59

Topic models
Topic models describe a family of similar methods to uncover meaningful patterns in documents based on their
textual content. Among the most common methods are LDA (Latent Dirichlet Allocation), CTM (Correlated Topic
Models), and STM (Structural Topic Models).

4 / 59

Topic models
All methods share some common assumptions:

Text corpora consist of documents (e.g. news articles, social media posts; individual documents
numbered) and terms (i.e., words; individual terms numbered). Documents can be
represented as bags-of-words.
Text corpora can be represented by latent topics which sit hierarchically between the whole corpus and
invidiual documents. Each document and each word may "belong" with differing probabilities to topic

 (mixed membership). has to be set by the researcher.
We want to estimate the matrices and which contain the document probabilites per topic,
and the word probabilities per topic, respectively.
This is achieved by modeling a data generating process that describes the creation of documents as first
drawing a probability distribution of topics for each document . For each word in document , we
then draw a topic from the document's topic distribution, and then a word from the topic's word
distribution.

D
d1, d2, . . . V w1,w2, . . .

K
di wi

k1, k2, . . . K

D × K V × K

d1, d2, . . . di

5 / 59

Topic models
The word-topic matrix may then be used to describe and interpret meaning of topics , for
example by looking at the words with the highest conditional probability for topic .
The document-topic matrix may be used to assign documents to topics, for example by assinging
each document to topic with the highest conditional probability.
Different topic modeling procedures differ mainly by the probability distributions used to represent the
topic probabilities.

In this class, we will use STM (Structural Topic Modeling) for ease of use and the ability to add covariates.

V × K k1, k2, . . .

kj
D × K

di kj

6 / 59

Setup
Setup as usual:

library(tidyverse)
library(tidytext)
library(quanteda)
library(stm)

7 / 59

Setup
Load the Guardian corpus. As last time, we also create a variable for the day the article was published.

guardian_tibble <- readRDS("data/guardian_sample_2020.rds") %>%
 mutate(day = lubridate::date(date))

Preprocess as usual:

guardian_corpus <- corpus(guardian_tibble,
 docid_field = "id", text_field = "body")

guardian_tokens <- guardian_corpus %>%
 tokens(remove_punct = TRUE, remove_symbols = TRUE, remove_numbers = TRUE,
 remove_url = TRUE, remove_separators = TRUE) %>%
 tokens_tolower()

guardian_dfm <- guardian_tokens %>%
 dfm()

8 / 59

Setup
DFM trimming may affect the outcome of topic modeling quite strongly. We usually want to remove common
wiords with little discriminating value and very short documents to make the topic modeling results more
interpretable and reduce computational load:

trimmed_dfm <- guardian_dfm %>%
 dfm_trim(max_docfreq = 0.6, min_docfreq = .01, docfreq_type = "prop") %>%
 dfm_remove(stopwords("en", source = "nltk")) %>%
 dfm_subset(ntoken(guardian_dfm) > 5)

9 / 59

Topic modeling with stm
We need to convert the DFM to a format suitable for the stm package:

stm_dfm <- convert(trimmed_dfm, to = "stm")
str(stm_dfm, max.level = 1)

List of 3
$ documents:List of 9965
$ vocab : chr [1:5165] "100m" "1950s" "1960s" "1970s" ...
$ meta :'data.frame': 9965 obs. of 5 variables:

10 / 59

Model fitting
To fit models, we simply use the stm() function. We need to provide the documents and the vocab, which are
both accessible in the stm_dfm object. We also need to set the K parameter. We begin by estimating 20 topics
(note that this may take quite a long time - use verbose = TRUE the follow the progress in the console; as topic
models are initialized randomly, it may be useful to also set a seed to create reproducible results):

guardian_stm_20 <- stm(documents = stm_dfm$documents,
 vocab = stm_dfm$vocab,
 K = 20)
guardian_stm_20

A topic model with 20 topics, 9965 documents and a 5165 word dictionary.

11 / 59

Model fitting
We can use plot() and summary() functions on the output:

plot(guardian_stm_20)

12 / 59

Model fitting

summary(guardian_stm_20)

A topic model with 20 topics, 9965 documents and a 5165 word dictionary.

Topic 1 Top Words:
Highest Prob: coronavirus, new, cases, people, virus, lockdown, covid-19
FREX: restrictions, cases, travel, quarantine, outbreak, infections, coronavirus
Lift: bridge, gatherings, passengers, quarantine, travellers, cruise, restrictions
Score: bridge, cases, coronavirus, virus, infections, restrictions, lockdown
Topic 2 Top Words:
Highest Prob: police, people, violence, officers, two, man, prison
FREX: police, officers, prison, violence, protesters, crime, arrested
Lift: en, sentenced, custody, police, prison, protesters, officers
Score: police, en, officers, violence, protesters, arrested, prison
Topic 3 Top Words:
Highest Prob: water, climate, years, new, year, fire, air
FREX: species, environmental, animals, wildlife, land, fires, birds
Lift: wildlife, grey, species, conservation, birds, pollution, fires
Score: grey, species, climate, wildlife, water, pollution, conservation
Topic 4 Top Words:
Highest Prob: year, pay, business, money, financial, government, economy
FREX: income, tax, financial, scheme, debt, unemployment, pay 13 / 59

Model selection
Before we start interpreting, we need to talk about setting . Apart from theoretical considerations, we may use
measures such as semantic coherence and exclusivity to gauge the validity of topic models.

Semantic coherence increases with more words with high topic probabilities appearing in the same
documents. Manual intepretation and labelling of topics is usually easier for topics with higher semantic
coherence.
Exclusivity increases with more words with high probabilites for one topic having lower probabilites for other
topics.
Both measures usually represent a trade-off: Semantic coherence can be increased simply by estimating
fewer topics; exclusivity usually increases with more topics.

K

14 / 59

Model selection
Compute semantic coherence with semanticCoherence():

semanticCoherence(guardian_stm_20, stm_dfm$documents)

[1] -52.60617 -68.15450 -80.08364 -54.77585 -61.35769 -61.44610 -63.25772
[8] -45.84327 -90.86718 -62.00340 -62.46925 -45.84828 -74.30635 -45.59453
[15] -77.92583 -39.70473 -66.85216 -76.90637 -81.31434 -64.50726

15 / 59

Model selection
Compute semantic coherence with exclusivity():

exclusivity(guardian_stm_20)

[1] 9.775630 9.670680 9.611312 9.698116 9.930043 9.724218 9.708318 9.842582
[9] 9.842910 9.617226 9.426971 9.400283 9.891755 9.899018 9.474194 9.822790
[17] 9.928742 9.862438 9.779013 9.746267

16 / 59

Model selection
To investigate the common trade-off between semantic coherence and exclusivity, it is useful to plot both
measures:

tibble(
 topic = 1:20,
 exclusivity = exclusivity(guardian_stm_20),
 semantic_coherence = semanticCoherence(guar
) %>%
 ggplot(aes(semantic_coherence, exclusivity,
 geom_point() +
 geom_text(nudge_y = .02) +
 theme_classic()

17 / 59

Model selection
We can use semantic coherence and exclusivity to compare topic models with a different number K of topics.
However, to do so, we must actually fit all models we want to compare.

As this may take some time, it is useful to employ parallelization to speed up the process. Using the furrr
package, we parallelize model estimation, so depending on the number of available cores, fitting multiple
models may actually on take marginally more time than fitting a single model:

library(furrr)
plan(multisession)

guardian_models <- tibble(K = c(20, 30, 40, 50, 60)) %>%
 mutate(topic_model = future_map(K, ~stm(documents = stm_dfm$documents,
 vocab = stm_dfm$vocab,
 K = .,
 verbose = FALSE)))

18 / 59

Model selection
We can then map the semantic coherence and exclusivity computations on the estimated models:

model_scores <- guardian_models %>%
 mutate(exclusivity = map(topic_model, exclusivity),
 semantic_coherence = map(topic_model, semanticCoherence, stm_dfm$documents)) %>%
 select(K, exclusivity, semantic_coherence)

model_scores

A tibble: 5 x 3
K exclusivity semantic_coherence
<dbl> <list> <list>
1 20 <dbl [20]> <dbl [20]>
2 30 <dbl [30]> <dbl [30]>
3 40 <dbl [40]> <dbl [40]>
4 50 <dbl [50]> <dbl [50]>
5 60 <dbl [60]> <dbl [60]>

19 / 59

Model selection
...and plot the values for all models:

model_scores %>%
 unnest(c(exclusivity, semantic_coherence))
 ggplot(aes(x = semantic_coherence, y = excl
 geom_point() +
 theme_classic()

20 / 59

Model selection
To more easily compare models, we let's summarize both measures per model. This neatly shows the common
trade-off, but it seems like the 40-topic solution may be a good start:

model_scores %>%
 unnest(c(exclusivity, semantic_coherence))
 group_by(K) %>%
 summarize(exclusivity = mean(exclusivity),
 semantic_coherence = mean(semanti
 ggplot(aes(x = semantic_coherence, y = excl
 geom_point() +
 theme_classic()

21 / 59

Model intepretation
Now to the fun stuff: What actually are our topics? First, let's extract our (for now) final model from the many
models we calculated:

guardian_stm_40 <- guardian_models %>%
 filter(K == 40) %>%
 pull(topic_model) %>%
 .[[1]]

guardian_stm_40

A topic model with 40 topics, 9965 documents and a 5165 word dictionary.

22 / 59

Model intepretation
We can extract the most important words per topic with the labelTopics() function. Apart from the actual
word probabilities per topic, this also includes three additional ways of finding important words. For example,
FREX (frequency-exclusivity) is the ratio of word frequency and word exclusivity per topic.

terms <- labelTopics(guardian_stm_40)
terms

Topic 1 Top Words:
Highest Prob: local, city, new, london, people, council, building
FREX: local, housing, building, cities, city, town, streets
Lift: bridge, buildings, towns, housing, bike, traffic, building
Score: bridge, city, housing, local, residents, council, town
Topic 2 Top Words:
Highest Prob: travel, de, french, france, two, german, flight
FREX: passengers, flight, flights, ship, airport, travel, crew
Lift: en, passenger, passengers, tourists, airport, railway, greece
Score: en, passengers, flights, france, french, travel, de
Topic 3 Top Words:
Highest Prob: year, number, people, data, last, since, uk
FREX: figures, average, compared, increase, higher, rate, rise
Lift: grey, statistics, average, compared, figures, risen, proportion
Score: grey, data, average, figures, increase, rate, rates 23 / 59

Model intepretation
Exercise 1: Topic model interpretation

Try to label the topics from this model. Are there any topics that are problematic or stick out otherwise?

24 / 59

Model intepretation
To extract the actual probability values, let's make use of the good ol' tidy() function again. If applied to an
STM object, this by default extracts the matrix (called in STM):

terms_probs <- tidy(guardian_stm_40, matrix = "beta")
terms_probs

A tibble: 206,600 x 3
topic term beta
<int> <chr> <dbl>
1 1 100m 4.82e-14
2 2 100m 5.57e-24
3 3 100m 4.17e-16
4 4 100m 7.52e- 5
5 5 100m 1.90e- 5
6 6 100m 2.03e- 7
7 7 100m 9.58e-13
8 8 100m 4.18e-30
9 9 100m 2.26e- 7
10 10 100m 8.11e- 9
... with 206,590 more rows

V × K β

25 / 59

Model interpretation
All beta values add up to 1 per topic:

terms_probs %>%
 group_by(topic) %>%
 summarise(sum_beta = sum(beta))

A tibble: 40 x 2
topic sum_beta
<int> <dbl>
1 1 1
2 2 1
3 3 1
4 4 1
5 5 1
6 6 1
7 7 1
8 8 1
9 9 1
10 10 1
... with 30 more rows

26 / 59

Model interpretation
To extract the matrix (called in STM), simply pass matrix = "gamma" to tidy():

doc_probs <- tidy(guardian_stm_40, matrix = "gamma", document_names = stm_dfm$meta$title)
doc_probs

A tibble: 398,600 x 3
document topic gamma
<chr> <int> <dbl>
1 We know this disaster is unprecedented – no amount of Scott Mo~ 1 0.00218
2 Mariah Carey's Twitter account hacked on New Year's Eve 1 0.00319
3 Australia weather forecast: dangerous bushfire and heatwave co~ 1 0.00610
4 TV tonight: Sherlock’s writers get their teeth into Dracula 1 0.00417
5 Shipping fuel regulation to cut sulphur levels comes into force 1 0.00444
6 Western Balkans left 'betrayed' by EU over membership talks 1 0.00134
7 Welcome to the roaring 2020s – inside the 3 January edition of~ 1 0.00557
8 The Power of Bad and How to Overcome It review – professional ~ 1 0.00594
9 Top 10 books about new beginnings 1 0.00220
10 Three cities, VAR and a $15m prize – ATP Cup prepares for laun~ 1 0.00764
... with 398,590 more rows

D × K γ

27 / 59

Model interpretation
Gamma values add up to 1 per document:

doc_probs %>%
 group_by(document) %>%
 summarise(sum_gamma = sum(gamma))

A tibble: 9,881 x 2
document sum_gamma
<chr> <dbl>
1 '$1,000 per person should be the baseline': Andrew Yang on direct ~ 1
2 'A beautiful change': Australia in bloom after drought-breaking ra~ 1
3 'A chance to be more than a number': the female inmates podcasting~ 1
4 'A climate change-scale problem': how the internet is destroying us 1
5 'A cry for help': Fifth of New Zealand high school pupils exposed ~ 1
6 'A defining moment in the Middle East': the killing of Qassem Sule~ 1
7 'A different twist': how school nativity plays have adapted to the~ 1
8 'A game changer'. The UK's first LGBTQ+ extra-care housing scheme ~ 1
9 'A ghost-town, tumbleweed quality': New York shuts down over coron~ 1
10 'A giant has fallen': anti-apartheid activist Denis Goldberg dies ~ 1
... with 9,871 more rows

28 / 59

Model interpretation
One common way of reporting topic models is by plotting topic proportions and most important words together:

top_terms <- tibble(topic = terms$topicnums,
 frex = apply(terms$frex, 1, paste, collapse = ", "))

gamma_by_topic <- doc_probs %>%
 group_by(topic) %>%
 summarise(gamma = mean(gamma)) %>%
 arrange(desc(gamma)) %>%
 left_join(top_terms, by = "topic") %>%
 mutate(topic = paste0("Topic ", topic),
 topic = reorder(topic, gamma))

gamma_by_topic %>%
 ggplot(aes(topic, gamma, label = frex, fill = topic)) +
 geom_col(show.legend = FALSE) +
 geom_text(hjust = 0, nudge_y = 0.0005, size = 3) +
 coord_flip() +
 scale_y_continuous(expand = c(0, 0), limits = c(0, 0.11), labels = scales::percent) +
 theme_classic() +
 theme(panel.grid.minor = element_blank(), panel.grid.major = element_blank()) +
 labs(x = NULL, y = expression(gamma)) 29 / 59

Model interpretation

30 / 59

Model interpretation
Of course, we can now also make use of other document variables, for example, to show topic distribution over
time. For example, let's compare topic 14 (US election terms) and 32 (Brexit terms):

doc_probs %>%
 left_join(guardian_tibble, by = c("document" = "title")) %>%
 mutate(day = lubridate::date(date)) %>%
 group_by(topic, day) %>%
 summarise(n = n(),
 gamma = mean(gamma),
 .groups = "drop") %>%
 mutate(topic = as_factor(topic)) %>%
 filter(topic %in% c(14, 32)) %>%
 ggplot(aes(x = day, y = gamma, color = topic, fill = topic)) +
 geom_line(size = 1) +
 theme_classic() +
 theme(panel.grid.minor = element_blank(),
 panel.grid.major.x = element_blank(),
 legend.position = "bottom") +
 scale_y_continuous(expand = c(0, 0), limits = c(0, 0.2), labels = scales::percent) +
 labs(x = "Date", y = expression(gamma), color = "Topic", fill = "Topic")

31 / 59

Model interpretation

32 / 59

Adding covariates
Apart from just comparing topics by document meta variables after modeling, we can also explicitly model
relationships between topics and those variables by adding them as covariates that predict topic prevalance in
the model:

guardian_stm_40_cov <- stm(documents = stm_dfm$documents,
 vocab = stm_dfm$vocab,
 prevalence = ~ stm_dfm$meta$pillar,
 K = 40,
 verbose = FALSE)
guardian_stm_40_cov

A topic model with 40 topics, 9965 documents and a 5165 word dictionary.

33 / 59

Adding covariates
We can then extract the effects with estimateEffect() function:

stm_40_effects <- estimateEffect(1:40 ~ pillar, guardian_stm_40_cov, stm_dfm$meta)

This provides regression tables per topic for the covariate effects:

summary(stm_40_effects, topics = c(14))

Call:
estimateEffect(formula = 1:40 ~ pillar, stmobj = guardian_stm_40_cov,
metadata = stm_dfm$meta)

Topic 14:

Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.013826 0.002346 5.893 3.91e-09 ***
pillarLifestyle -0.010491 0.003745 -2.801 0.0051 **
pillarNews 0.019974 0.002773 7.204 6.27e-13 *** 34 / 59

Adding covariates
STM effects objects also have a plot() function:

plot(stm_40_effects, covariate = "pillar", topics = c(14, 36))

35 / 59

Adding covariates
Use the stiminsights package to extract the values and have more options in plotting covariate effects:

stminsights::get_effects(stm_40_effects, "pil
 filter(topic %in% c(14, 32, 36)) %>%
 ggplot(aes(x = topic, y = proportion, ymin
 geom_pointrange(position = position_dodge(.
 coord_flip() +
 theme_classic() +
 scale_y_continuous("Topic proportion", labe
 labs(x = "Topic", color = "Pillar", shape =

36 / 59

Keyword-assisted topic models

37 / 59

Keyword-assisted topic models with keyATM
A more recent expansion of topic models are called keyword-assisted topic models. These models somewhat
combine deductive and inductive approaches, by mainly following the unsupervised topic modeling procedure,
but allow the specification of a-priori topics with keywords beforehand.

In R, the keyATM package may be used to fit keyword-assisted topic models:

install.packages("keyATM")
library(keyATM)

keyATM 0.4.0 successfully loaded.
Papers, examples, resources, and other materials are at
https://keyatm.github.io/keyATM/

38 / 59

Keyword-assisted topic models with keyATM
Again, keyATM uses it's own format for modeling, but also provides a conversion function:

keyATM_docs <- keyATM_read(texts = trimmed_dfm)

Using quanteda dfm.

39 / 59

Defining a-priori topics with keywords
Let's work with the guardian corpus again, but this time, add some a-priori topics to the modell. We first create a
named list of a-priori topics and associated keywords:

keywords <- list(
 "U.S. Election" = c("biden", "trump", "election"),
 "Brexit" = c("brexit", "uk", "europe", "eu"),
 "Football" = c("football", "league", "game")
)

40 / 59

Defining a-priori topics with keywords
keyATM kindly provides a function visualize_keywords() to inspect whether our keywords are actually useful
by plotting their relative frequency. The authors suggest a proportion of at least 0.1% per keyword, but for larger
corpora and more distinctive topics, lower numbers may be okay as well:

visualize_keywords(keyATM_docs, keywords)

41 / 59

Model fitting
We fit the model using the keyATM() function using the following arguments:

docs defines our DFM, which we have converted to the keyATM format.
keywords defines our a-priori topics with associated keywords.
no_keyword_topics defines the number of additional topics the model should estimate.
model specifies the model type; we are going to use the simple "base" model, but note that you may also
use additional models that, for example, allow for covariate specification. See the offical documentation for
more details.

guardian_keyatm <- keyATM(docs = keyATM_docs,
 keywords = keywords,
 no_keyword_topics = 37,
 model = "base")

guardian_keyatm <- readRDS("offline_data/5/guardian_keyatm.rds")

42 / 59

https://keyatm.github.io/keyATM/articles/pkgdown_files/keyATM_cov.html

Model selection
We can measure and compare model fit using the plot_modelfit() function, which plots two model fit
measures against the model fit iterations. Log-likelihood should stabilize on a high value, perplexity on a low value
over time to indicate good model fit:

plot_modelfit(guardian_keyatm)

43 / 59

Model selection
We can also plot , the document-topic distribution prior, against model iterations. Again, values should stabilize
over time to indicate good model fit. This indicates that the Brexit topic is probably not well defined by the
keywords we chose:

plot_alpha(guardian_keyatm)

α

44 / 59

Model interpretation
Similarly to before, top_words() reports the most important words per topic. Note that the checkmark symbol
indicates a-priori keywords for topics, numbers in square brackets [] indicate keywords from a a-priori topics
appearing in other topics:

top_words(guardian_keyatm, n = 7)

1_U.S. Election 2_Brexit 3_Football Other_1 Other_2
1 trump [<U+2713>] uk [<U+2713>] league [<U+2713>] art climate
2 election [<U+2713>] government game [<U+2713>] london energy
Other_3 Other_4 Other_5 Other_6 Other_7 Other_8 Other_9 Other_10
1 report vaccine australia year family like film people
2 investigation health australian company died people show health
Other_11 Other_12 Other_13 Other_14 Other_15 Other_16 Other_17 Other_18
1 workers students fire people government climate coronavirus local
2 work school water says economy species cases city
Other_19 Other_20 Other_21 Other_22 Other_23 Other_24 Other_25 Other_26
1 food care business book fashion people china johnson
2 add health lockdown world masks political chinese government
Other_27 Other_28 Other_29 Other_30 Other_31 Other_32 Other_33 Other_34
1 women police music first media court says like
2 black people album years news case i'm time
Other_35 Other_36 Other_37 45 / 59

Model interpretation
Comparably, top_docs() reports the most important documents (index of the model DFM) per topic:

top_docs(guardian_keyatm, n = 1)

apply(x$theta, 2, measuref)
1_U.S. Election 8556
2_Brexit 6995
3_Football 5960
Other_1 4231
Other_2 7919
Other_3 5835
Other_4 5742
Other_5 1037
Other_6 235
Other_7 7708
Other_8 1073
Other_9 891
Other_10 7638
Other_11 4972
Other_12 6892
Other_13 7972
Other_14 2020 46 / 59

Model interpretation
Sadly, keyATM objects are not yet compatible with tidy(). However, we can access the (called in this
case) and (called in this case) matrices directly from the model object:

guardian_keyatm$phi
guardian_keyatm$theta

V × K ϕ

D × K θ

47 / 59

Model intepretation
Let's transform and extract the 7 most important words per topic:

top_terms <- guardian_keyatm$phi %>%
 t() %>%
 as_tibble(rownames = "word") %>%
 pivot_longer(-word, names_to = "topic", values_to = "phi") %>%
 group_by(topic) %>%
 top_n(7, phi) %>%
 arrange(topic, desc(phi)) %>%
 group_by(topic) %>%
 summarise(top_words = paste(word, collapse = ", "), .groups = "drop")

top_terms

A tibble: 40 x 2
topic top_words
<chr> <chr>
1 1_U.S. Electi~ trump, election, president, biden, us, trump's, donald
2 2_Brexit uk, government, could, new, last, time, make
3 3_Football league, game, players, season, team, football, last
4 Other_1 art, london, arts, theatre, work, artists, festival
5 Other_10 people, health, coronavirus, home, covid-19, government, publ~

ϕ

48 / 59

Model intepretation
Similarly, extract mean topic proportions from . Again, the proportion of the Brexit topic indicates that this was
probably not the best specified topic:

top_topics <- guardian_keyatm$theta %>%
 as_tibble(rownames = "document") %>%
 pivot_longer(-document, names_to = "topic", values_to = "theta") %>%
 group_by(topic) %>%
 summarise(mean_theta = mean(theta), .groups = "drop") %>%
 arrange(desc(mean_theta))

top_topics

A tibble: 40 x 2
topic mean_theta
<chr> <dbl>
1 2_Brexit 0.239
2 3_Football 0.0765
3 Other_34 0.0637
4 Other_30 0.0514
5 Other_14 0.0439
6 Other_8 0.0366
7 Other_22 0.0350

θ

49 / 59

Model intepretation
To create a similar plot as before, we can join both tibbles:

top_topics %>%
 left_join(top_terms, by = "topic") %>%
 mutate(topic = reorder(topic, mean_theta)) %>%
 ggplot(aes(topic, mean_theta, label = top_words, fill = topic)) +
 geom_col(show.legend = FALSE) +
 geom_text(hjust = 0, nudge_y = 0.0005, size = 3) +
 coord_flip() +
 scale_y_continuous(expand = c(0, 0), limits = c(0, 0.4), labels = scales::percent) +
 theme_bw() +
 theme(panel.grid.minor = element_blank(),
 panel.grid.major = element_blank()) +
 labs(x = NULL, y = expression(theta))

50 / 59

Model interpretation

51 / 59

Validating topic models

52 / 59

Validating topic models
As topic models will always output the desired number of topics, again, validation is key. For topic models, the
following validation steps are common:

Computing data fit indices (e.g., semantic coherence, exclusivity)
Manually labelling and intepreting topics (duh)
Investigating meaningful relationships of results with other variables in the data (e.g., a terrorism topic
should lead to higher scores in the aftermath of terrorist attacks)

Furthermore, for manual validation, we usually are not able to provide gold standards, as we did not define the
topics ourselves. However, two methods were developed to manually validate how good topics can be
interpreted by humans:

Word intrusion test: Randomly draw n words with high probabilities and 1 word with low probability from
the same topic distribution. Human coders should then be able to identify the intruder word.
Topic intrusion test: Randomly drawn n topics with high probabilities and 1 topic with low probability from
the same document distribution. Human coders should then be able to identify the intruder topic after
reading through the document.
In both cases, we can then compute the precision of repeated word/topic intrusion tests for multiple
topics/documents.

53 / 59

Validating topic models with oolong
Both tests are implemented in the oolong package know from last time:

library(oolong)

The workflow is quite simple:

Use wi() (word intrusion), wsi() (word-set intrusion; variant of word intrusion with sets of words instead of
single words), and ti() to create the test object with the model object as input.
Use the associated method to do the actual test ($do_xxx()).
$lock() the object to display results.
oolong() objects can be cloned before doing the test to accomodate for multiple coders with
clone_oolong().
Use summarize_oolong() to compare the results of multiple tests.

54 / 59

Word intrusion tests
Example: Word intrusion test

Create and clone objects
wi_test_coder_1 <- wi(guardian_stm_40_cov, userid = "Coder 1")
wi_test_coder_2 <- clone_oolong(wi_test_coder_1, userid = "Coder 2")

Do the test
wi_test_coder_1$do_word_intrusion_test()
wi_test_coder_2$do_word_intrusion_test()

Lock
wi_test_coder_1$lock()
wi_test_coder_2$lock()

Summarize
summarize_oolong(wi_test_coder_1, wi_test_coder_2)

55 / 59

Word intrusion tests
Example: Word intrusion test

56 / 59

Word-set intrusion tests
Exercise 2: Validating topic models

Create an oolong object with wsi() on the guardian_stm_40_cov model and perform a word-set intrusion
test. Good luck!

57 / 59

Topic intrusion tests
Exercise 3: Validating topic models

Create an oolong object with ti() on the guardian_stm_40_cov model and perform a topic intrusion test.
Good luck!

58 / 59

Thanks
Credits:

Slides created with xaringan
Title image by Marjan Blahn / Unsplash
Coding cat gif by Memecandy/Giphy

59 / 59

https://github.com/yihui/xaringan
https://unsplash.com/photos/AM-Tkk_dkNU
https://giphy.com/gifs/memecandy-LmNwrBhejkK9EFP504

