

Studying News Use with Computational Methods

Text Analysis in R, Part II: Topic Modeling

Julian Unkel University of Konstanz 2021/06/28

Agenda

Especially with large text corpora, we may want to use methods to explore the textual content and discover meaningful patterns. Unsupervised machine learning methods structure text corpora into latent classes without much user input.

Topic modeling describes one family of methods to uncover such meaningful patterns in large text corpora.

Our agenda today:

- Topic models
 - Basics
 - Model fitting
 - Model selection
 - Model interpretation
 - Adding covariates
- Keyword-assisted topic models
 - Defining a-priori topics
 - Model fitting
 - Model selection
 - Model interpretation
- Validating topic models

Universität Konstanz

Topic models describe a family of similar methods to uncover meaningful patterns in documents based on their textual content. Among the most common methods are *LDA* (Latent Dirichlet Allocation), *CTM* (Correlated Topic Models), and *STM* (Structural Topic Models).

All methods share some common assumptions:

- Text corpora consist of D documents (e.g. news articles, social media posts; individual documents numbered d_1, d_2, \ldots) and V terms (i.e., words; individual terms numbered w_1, w_2, \ldots). Documents can be represented as bags-of-words.
- Text corpora can be represented by K latent topics which sit hierarchically between the whole corpus and invidiual documents. Each document d_i and each word w_i may "belong" with differing probabilities to topic k_1, k_2, \ldots (mixed membership). K has to be set by the researcher.
- We want to estimate the matrices $D \times K$ and $V \times K$ which contain the document probabilities per topic, and the word probabilities per topic, respectively.
- This is achieved by modeling a data generating process that describes the creation of documents as first drawing a probability distribution of topics for each document d_1, d_2, \ldots . For each word in document d_i , we then draw a topic from the document's topic distribution, and then a word from the topic's word distribution.

- The word-topic matrix $V \times K$ may then be used to describe and interpret meaning of topics k_1, k_2, \ldots , for example by looking at the words with the highest conditional probability for topic k_j .
- The document-topic matrix $D \times K$ may be used to assign documents to topics, for example by assinging each document d_i to topic k_j with the highest conditional probability.
- Different topic modeling procedures differ mainly by the probability distributions used to represent the topic probabilities.

In this class, we will use *STM* (Structural Topic Modeling) for ease of use and the ability to add covariates.

Setup

Setup as usual:

library(tidyverse)
library(tidytext)
library(quanteda)
library(stm)

Load the Guardian corpus. As last time, we also create a variable for the day the article was published.

```
guardian_tibble <- readRDS("data/guardian_sample_2020.rds") %>%
    mutate(day = lubridate::date(date))
```

Preprocess as usual:

Setup

DFM trimming may affect the outcome of topic modeling quite strongly. We usually want to remove common wiords with little discriminating value and very short documents to make the topic modeling results more interpretable and reduce computational load:

```
trimmed_dfm <- guardian_dfm %>%
    dfm_trim(max_docfreq = 0.6, min_docfreq = .01, docfreq_type = "prop") %>%
    dfm_remove(stopwords("en", source = "nltk")) %>%
    dfm_subset(ntoken(guardian_dfm) > 5)
```

Topic modeling with stm

We need to convert the DFM to a format suitable for the stm package:

```
stm_dfm <- convert(trimmed_dfm, to = "stm")
str(stm_dfm, max.level = 1)</pre>
```

List of 3
\$ documents:List of 9965
\$ vocab : chr [1:5165] "100m" "1950s" "1960s" "1970s" ...
\$ meta :'data.frame': 9965 obs. of 5 variables:

To fit models, we simply use the stm() function. We need to provide the documents and the vocab, which are both accessible in the stm_dfm object. We also need to set the K parameter. We begin by estimating 20 topics (note that this may take quite a long time - use verbose = TRUE the follow the progress in the console; as topic models are initialized randomly, it may be useful to also set a seed to create reproducible results):

A topic model with 20 topics, 9965 documents and a 5165 word dictionary.

We can use plot() and summary() functions on the output:

plot(guardian_stm_20)

Expected Topic Proportions

summary(guardian_stm_20)

A topic model with 20 topics, 9965 documents and a 5165 word dictionary.

Topic 1 Top Words:

Highest Prob: coronavirus, new, cases, people, virus, lockdown, covid-19

FREX: restrictions, cases, travel, quarantine, outbreak, infections, coronavirus

Lift: bridge, gatherings, passengers, quarantine, travellers, cruise, restrictions
Score: bridge, cases, coronavirus, virus, infections, restrictions, lockdown

Topic 2 Top Words:

Highest Prob: police, people, violence, officers, two, man, prison ## FREX: police, officers, prison, violence, protesters, crime, arrested ## Lift: en, sentenced, custody, police, prison, protesters, officers ## Score: police, en, officers, violence, protesters, arrested, prison ## Topic 3 Top Words:

Highest Prob: water, climate, years, new, year, fire, air

FREX: species, environmental, animals, wildlife, land, fires, birds

Lift: wildlife, grey, species, conservation, birds, pollution, fires

Score: grey, species, climate, wildlife, water, pollution, conservation
Topic 4 Top Words:

Highest Prob: year, pay, business, money, financial, government, economy
FREX: income, tax, financial, scheme, debt, unemployment, pay

Before we start interpreting, we need to talk about setting K. Apart from theoretical considerations, we may use measures such as *semantic coherence* and *exclusivity* to gauge the validity of topic models.

- Semantic coherence increases with more words with high topic probabilities appearing in the same documents. Manual intepretation and labelling of topics is usually easier for topics with higher semantic coherence.
- *Exclusivity* increases with more words with high probabilites for one topic having lower probabilites for other topics.
- Both measures usually represent a trade-off: Semantic coherence can be increased simply by estimating fewer topics; exclusivity usually increases with more topics.

Compute semantic coherence with semanticCoherence():

semanticCoherence(guardian_stm_20, stm_dfm\$documents)

[1] -52.60617 -68.15450 -80.08364 -54.77585 -61.35769 -61.44610 -63.25772
[8] -45.84327 -90.86718 -62.00340 -62.46925 -45.84828 -74.30635 -45.59453
[15] -77.92583 -39.70473 -66.85216 -76.90637 -81.31434 -64.50726

Compute semantic coherence with exclusivity():

exclusivity(guardian_stm_20)

[1] 9.775630 9.670680 9.611312 9.698116 9.930043 9.724218 9.708318 9.842582
[9] 9.842910 9.617226 9.426971 9.400283 9.891755 9.899018 9.474194 9.822790
[17] 9.928742 9.862438 9.779013 9.746267

To investigate the common trade-off between semantic coherence and exclusivity, it is useful to plot both measures:

```
tibble(
  topic = 1:20,
  exclusivity = exclusivity(guardian_stm_20),
  semantic_coherence = semanticCoherence(guar
  ) %>%
  ggplot(aes(semantic_coherence, exclusivity,
  geom_point() +
  geom_text(nudge_y = .02) +
  theme_classic()
```


Universität Konstanz

We can use semantic coherence and exclusivity to compare topic models with a different number K of topics. However, to do so, we must actually fit all models we want to compare.

As this may take some time, it is useful to employ parallelization to speed up the process. Using the furrr package, we parallelize model estimation, so depending on the number of available cores, fitting multiple models may actually on take marginally more time than fitting a single model:

We can then map the semantic coherence and exclusivity computations on the estimated models:

model_scores

```
## # A tibble: 5 x 3
## K exclusivity semantic_coherence
## <dbl> <list> <list>
## 1 20 <dbl [20]> <dbl [20]>
## 2 30 <dbl [30]> <dbl [30]>
## 3 40 <dbl [40]> <dbl [30]>
## 4 50 <dbl [40]> <dbl [40]>
## 5 60 <dbl [50]> <dbl [50]>
```


...and plot the values for all models:

```
model_scores %>%
    unnest(c(exclusivity, semantic_coherence))
    ggplot(aes(x = semantic_coherence, y = excl
    geom_point() +
    theme_classic()
```


To more easily compare models, we let's summarize both measures per model. This neatly shows the common trade-off, but it seems like the 40-topic solution may be a good start:

```
model_scores %>%
  unnest(c(exclusivity, semantic_coherence))
  group_by(K) %>%
  summarize(exclusivity = mean(exclusivity),
            semantic_coherence = mean(semanti
  ggplot(aes(x = semantic_coherence, y = excl
  geom_point() +
  theme_classic()
```


Now to the fun stuff: What actually *are* our topics? First, let's extract our (for now) final model from the many models we calculated:

```
guardian_stm_40 <- guardian_models %>%
filter(K == 40) %>%
pull(topic_model) %>%
.[[1]]
```

guardian_stm_40

A topic model with 40 topics, 9965 documents and a 5165 word dictionary.

We can extract the most important words per topic with the labelTopics() function. Apart from the actual word probabilities per topic, this also includes three additional ways of finding important words. For example, FREX (*frequency-exclusivity*) is the ratio of word frequency and word exclusivity per topic.

```
terms <- labelTopics(guardian_stm_40)
terms</pre>
```

Topic 1 Top Words: Highest Prob: local, city, new, london, people, council, building ## FREX: local, housing, building, cities, city, town, streets ## Lift: bridge, buildings, towns, housing, bike, traffic, building ## ## Score: bridge, city, housing, local, residents, council, town ## Topic 2 Top Words: Highest Prob: travel, de, french, france, two, german, flight ## FREX: passengers, flight, flights, ship, airport, travel, crew ## Lift: en, passenger, passengers, tourists, airport, railway, greece ## ## Score: en, passengers, flights, france, french, travel, de ## Topic 3 Top Words: Highest Prob: year, number, people, data, last, since, uk ## FREX: figures, average, compared, increase, higher, rate, rise ## Lift: grey, statistics, average, compared, figures, risen, proportion ## Score: grey, data, average, figures, increase, rate, rates

Exercise 1: Topic model interpretation

Try to label the topics from this model. Are there any topics that are problematic or stick out otherwise?

To extract the actual probability values, let's make use of the good ol' tidy() function again. If applied to an STM object, this by default extracts the $V \times K$ matrix (called β in STM):

```
terms_probs <- tidy(guardian_stm_40, matrix = "beta")
terms_probs</pre>
```

##	# A	tibb]	le: 206	5,600 x 3	
##		topic	term	beta	
##		<int></int>	<chr></chr>	<dbl></dbl>	
##	1	1	100m	4.82e-14	
##	2	2	100m	5.57e-24	
##	3	3	100m	4.17e-16	
##	4	4	100m	7.52e- 5	
##	5	5	100m	1.90e- 5	
##	6	6	100m	2.03e- 7	
##	7	7	100m	9.58e-13	
##	8	8	100m	4.18e-30	
##	9	9	100m	2.26e- 7	
##	10	10	100m	8.11e- 9	
##	#.	wit	h 206,	,590 more	rows

All beta values add up to 1 per topic:

```
terms_probs %>%
  group_by(topic) %>%
  summarise(sum_beta = sum(beta))
```

```
## # A tibble: 40 x 2
##
    topic sum_beta
##
     <int>
              <dbl>
##
  1
         1
##
  2
         2
         3
  3
##
##
  4
         4
## 5
         5
## 6
         6
##
  7
         7
##
  8
         8
   9
##
         9
## 10
        10
## # ... with 30 more rows
```


To extract the $D \times K$ matrix (called γ in STM), simply pass matrix = "gamma" to tidy():

doc_probs <- tidy(guardian_stm_40, matrix = "gamma", document_names = stm_dfm\$meta\$title)
doc_probs</pre>

##	#	A tibble: 398,600 x 3		
##		document	topic	gamma
##		<chr></chr>	<int></int>	<dbl></dbl>
##	1	We know this disaster is unprecedented – no amount of Scott Mo~	1	0.00218
##	2	Mariah Carey's Twitter account hacked on New Year's Eve	1	0.00319
##	3	Australia weather forecast: dangerous bushfire and heatwave co~	1	0.00610
##	4	TV tonight: Sherlock's writers get their teeth into Dracula	1	0.00417
##	5	Shipping fuel regulation to cut sulphur levels comes into force	1	0.00444
##	6	Western Balkans left 'betrayed' by EU over membership talks	1	0.00134
##	7	Welcome to the roaring 2020s - inside the 3 January edition of~	1	0.00557
##	8	The Power of Bad and How to Overcome It review – professional \sim	1	0.00594
##	9	Top 10 books about new beginnings	1	0.00220
##	10	Three cities, VAR and a \$15m prize - ATP Cup prepares for laun~	1	0.00764
##	#	with 398,590 more rows		

Gamma values add up to 1 per document:

```
doc_probs %>%
  group_by(document) %>%
  summarise(sum_gamma = sum(gamma))
## # A tibble: 9,881 x 2
     document
##
                                                                         sum_gamma
                                                                             <dbl>
##
     <chr>
  1 '$1,000 per person should be the baseline': Andrew Yang on direct ~
##
   2 'A beautiful change': Australia in bloom after drought-breaking ra~
##
## 3 'A chance to be more than a number': the female inmates podcasting~
  4 'A climate change-scale problem': how the internet is destroying us
##
   5 'A cry for help': Fifth of New Zealand high school pupils exposed ~
##
   6 'A defining moment in the Middle East': the killing of Qassem Sule~
##
## 7 'A different twist': how school nativity plays have adapted to the~
## 8 'A game changer'. The UK's first LGBTQ+ extra-care housing scheme ~
## 9 'A ghost-town, tumbleweed quality': New York shuts down over coron~
## 10 'A giant has fallen': anti-apartheid activist Denis Goldberg dies ~
## # ... with 9,871 more rows
```


One common way of reporting topic models is by plotting topic proportions and most important words together:

```
top_terms <- tibble(topic = terms$topicnums,</pre>
                    frex = apply(terms$frex, 1, paste, collapse = ", "))
gamma_by_topic <- doc_probs %>%
 group_by(topic) %>%
 summarise(gamma = mean(gamma)) %>%
 arrange(desc(gamma)) %>%
 left_join(top_terms, by = "topic") %>%
 mutate(topic = paste0("Topic ", topic),
         topic = reorder(topic, gamma))
gamma_by_topic %>%
 ggplot(aes(topic, gamma, label = frex, fill = topic)) +
 geom_col(show.legend = FALSE) +
 geom_text(hjust = 0, nudge_y = 0.0005, size = 3) +
 coord_flip() +
 scale_y_continuous(expand = c(0, 0), limits = c(0, 0.11), labels = scales::percent) +
 theme_classic() +
 theme(panel.grid.minor = element_blank(), panel.grid.major = element_blank()) +
 labs(x = NULL, y = expression(gamma))
```


Topic 25 -	i'm, i've, says, really, got, lot, think
Topic 16-	perhaps, sense, seems, simply, indeed, columnist
Topic 26 -	investigation, legal, court, allegations, inquiry, lawyers, alleged
Topic 23 -	question, asked, think, wrong, answer, questions, know
Topic 39-	cases, outbreak, deaths, virus, corona virus, quarantine, tested
Topic 4-	income, tax, scheme, unemployment, debt, budget, pay
Topic 31 -	father, mother, daughter, wife, family, died, son
Topic 8-	workers, care, staff, mental, vulnerable, services, working
Topic 38 -	restrictions, distancing, measures, hancock, guidance, testing, advice
Topic 24 -	film, comedy, films, episode, actor, netflix, tv
Topic 36 -	ball, goal, game, scored, wolves, goals, score
Topic 30 -	customers, sales, companies, stores, retail, company, market
Topic 29-	league, football, players, clubs, club, premier, chelsea
Topic 3 -	figures, average, compared, increase, higher, rate, rise
Topic 13-	hong, chinese, kong, china's, iran, foreign
Topic 21 -	labour, mps, johnson, tory, mp, cummings, starmer
Topic 22 -	patients, vaccine, doctors, vaccines, disease, hospital, hospitals
Topic 37 -	sport, cricket, rugby, racing, champion, coach, grand
Topic 5 -	species, wildlife, fires, animals, birds, trees, land
Topic 28 -	police, racism, officers, protesters, protests, protest, racial
Topic 20 -	book, books, novel, writes, writing, read, reading
Topic 14-	trump, trump's, donald, president, americans, washington, ballots
Topic 17 -	emissions, climate, carbon, energy, gas, fuel, coal
Topic 10 -	morning, meeting, event, date, andrew, email, royal
Topic 35 -	restaurant, garden, food, coffee, eat, christmas, kitchen
Topic 6 -	art, theatre, arts, museum, festival, cultural, artist
Topic 15 -	song, album, songs, band, music, singer, singing
Topic 32 -	eu, european, brexit, trade, deal, negotiations, agreement
Topic 9-	technology, digital, virtual, internet, video, online, space
Topic 33 -	media, facebook, journalists, twitter, posted, content, conspiracy
Topic 34 -	australia, australia's, universities, nsw, australian, morrison, australians
Topic 19-	students, education, school, teachers, pupils, schools, student
Topic 2 -	passengers, flight, flights, ship, airport, travel, crew
Topic 1-	local, housing, building, cities, city, town, streets
Topic 18-	voters, sanders, biden, democratic, votes, voting, democrats
Topic 27 -	women, sex, sexual, gender, female, male, men
Topic 11 -	cook, salt, pan, chicken, add, sugar, heat
Topic 40 -	wearing, mask, wear, fashion, masks, skin, clothes
Topic 7 -	v, leeds, west, newcastle, sky, wilson, st
Topic 12 -	app, amazon, c, apple, google, b, apps
0.0	1% 2.5% 5.0% 7.5%

10.0%

Of course, we can now also make use of other document variables, for example, to show topic distribution over time. For example, let's compare topic 14 (US election terms) and 32 (Brexit terms):

```
doc_probs %>%
 left_join(guardian_tibble, by = c("document" = "title")) %>%
 mutate(day = lubridate::date(date)) %>%
 group_by(topic, day) %>%
 summarise(n = n())
            gamma = mean(gamma),
            .groups = "drop") %>%
 mutate(topic = as_factor(topic)) %>%
 filter(topic %in% c(14, 32)) %>%
 ggplot(aes(x = day, y = gamma, color = topic, fill = topic)) +
 geom_line(size = 1) +
 theme classic() +
 theme(panel.grid.minor = element_blank(),
        panel.grid.major.x = element_blank(),
       legend.position = "bottom") +
 scale_y_continuous(expand = c(0, 0), limits = c(0, 0.2), labels = scales::percent) +
 labs(x = "Date", y = expression(gamma), color = "Topic", fill = "Topic")
```


Topic — 14 — 32

Apart from just comparing topics by document meta variables after modeling, we can also explicitly model relationships between topics and those variables by adding them as covariates that predict topic prevalance in the model:

A topic model with 40 topics, 9965 documents and a 5165 word dictionary.

We can then extract the effects with estimateEffect() function:

```
stm_40_effects <- estimateEffect(1:40 ~ pillar, guardian_stm_40_cov, stm_dfm$meta)</pre>
```

This provides regression tables per topic for the covariate effects:

```
summary(stm_40_effects, topics = c(14))
```

```
##
## Call:
## estimateEffect(formula = 1:40 ~ pillar, stmobj = guardian_stm_40_cov,
      metadata = stm_dfm$meta)
##
##
##
## Topic 14:
##
## Coefficients:
##
                   Estimate Std. Error t value Pr(>|t|)
                   0.013826
                              0.002346 5.893 3.91e-09 ***
## (Intercept)
## pillarLifestyle -0.010491 0.003745 -2.801 0.0051 **
## pillarNews
                              0.002773 7.204 6.27e-13 ***
                   0.019974
```


STM effects objects also have a plot() function:

plot(stm_40_effects, covariate = "pillar", topics = c(14, 36))

Use the stiminsights package to extract the values and have more options in plotting covariate effects:

```
stminsights::get_effects(stm_40_effects, "pil
 filter(topic %in% c(14, 32, 36)) %>%
 ggplot(aes(x = topic, y = proportion, ymin
 geom_pointrange(position = position_dodge(.
 coord_flip() +
 theme_classic() +
 scale_y_continuous("Topic proportion", labe
 labs(x = "Topic", color = "Pillar", shape =
```


Keyword-assisted topic models

Keyword-assisted topic models with keyATM

A more recent expansion of topic models are called **keyword-assisted topic models**. These models somewhat combine deductive and inductive approaches, by mainly following the unsupervised topic modeling procedure, but allow the specification of a-priori topics with keywords beforehand.

In R, the keyATM package may be used to fit keyword-assisted topic models:

```
install.packages("keyATM")
library(keyATM)
```

keyATM 0.4.0 successfully loaded.
Papers, examples, resources, and other materials are at
https://keyatm.github.io/keyATM/

Keyword-assisted topic models with keyATM

Again, keyATM uses it's own format for modeling, but also provides a conversion function:

keyATM_docs <- keyATM_read(texts = trimmed_dfm)</pre>

Using quanteda dfm.

Defining a-priori topics with keywords

Let's work with the guardian corpus again, but this time, add some a-priori topics to the modell. We first create a named list of a-priori topics and associated keywords:

```
keywords <- list(
   "U.S. Election" = c("biden", "trump", "election"),
   "Brexit" = c("brexit", "uk", "europe", "eu"),
   "Football" = c("football", "league", "game")
)</pre>
```

Defining a-priori topics with keywords

keyATM kindly provides a function visualize_keywords() to inspect whether our keywords are actually useful by plotting their relative frequency. The authors suggest a proportion of at least 0.1% per keyword, but for larger corpora and more distinctive topics, lower numbers may be okay as well:

visualize_keywords(keyATM_docs, keywords)

We fit the model using the keyATM() function using the following arguments:

- docs defines our DFM, which we have converted to the keyATM format.
- keywords defines our a-priori topics with associated keywords.
- no_keyword_topics defines the number of additional topics the model should estimate.
- model specifies the model type; we are going to use the simple "base" model, but note that you may also use additional models that, for example, allow for covariate specification. See the offical documentation for more details.

guardian_keyatm <- readRDS("offline_data/5/guardian_keyatm.rds")</pre>

We can measure and compare model fit using the plot_modelfit() function, which plots two model fit measures against the model fit iterations. *Log-likelihood* should stabilize on a high value, *perplexity* on a low value over time to indicate good model fit:

plot_modelfit(guardian_keyatm)

Universität Konstanz

We can also plot α , the document-topic distribution prior, against model iterations. Again, values should stabilize over time to indicate good model fit. This indicates that the Brexit topic is probably not well defined by the keywords we chose:

plot_alpha(guardian_keyatm)

Universität Konstanz

Similarly to before, top_words() reports the most important words per topic. Note that the checkmark symbol indicates a-priori keywords for topics, numbers in square brackets [] indicate keywords from a a-priori topics appearing in other topics:

```
top_words(guardian_keyatm, n = 7)
```

2 Brexit ## 1 U.S. Election 3 Football Other 1 Other 2 ## 1 trump [<U+2713>] uk [<U+2713>] league [<U+2713>] art climate ## 2 election [<U+2713>] government game [<U+2713>] london energy Other_3 Other_4 Other_5 Other_6 Other_7 Other_8 Other_9 Other_10 ## year family like ## 1 report vaccine australia film people ## 2 investigation health australian company died people health show ## Other_11 Other_12 Other_13 Other_14 Other_15 Other_16 Other_17 Other_18 fire ## 1 workers students people government climate coronavirus local ## 2 work school water says economy species cases citv Other_19 Other_20 Other_21 Other_22 Other_23 Other_24 Other_25 ## Other 26 ## 1 care business book fashion food people china johnson ## 2 add health lockdown world masks political chinese government Other_27 Other_28 Other_29 Other_30 Other_31 Other_32 Other_33 Other_34 ## ## 1 police music first media like women court says album i'm ## 2 black people time years case news Other_35 Other_36 Other_37 ##

Comparably, top_docs() reports the most important documents (index of the model DFM) per topic:

top_docs(guardian_keyatm, n = 1)

##		apply(x\$theta,	2,	measuref)
##	1_U.S. Election			8556
##	2_Brexit			6995
##	3_Football			5960
##	Other_1			4231
##	Other_2			7919
##	Other_3			5835
##	Other_4			5742
##	Other_5			1037
##	Other_6			235
##	Other_7			7708
##	Other_8			1073
##	Other_9			891
##	Other_10			7638
##	Other_11			4972
##	Other_12			6892
##	Other_13			7972
##	Other_14			2020

Sadly, keyATM objects are not yet compatible with tidy(). However, we can access the $V \times K$ (called ϕ in this case) and $D \times K$ (called θ in this case) matrices directly from the model object:

guardian_keyatm\$phi
guardian_keyatm\$theta

Let's transform ϕ and extract the 7 most important words per topic:

```
top_terms <- guardian_keyatm$phi %>%
   t() %>%
   as_tibble(rownames = "word") %>%
   pivot_longer(-word, names_to = "topic", values_to = "phi") %>%
   group_by(topic) %>%
   top_n(7, phi) %>%
   arrange(topic, desc(phi)) %>%
   group_by(topic) %>%
   summarise(top_words = paste(word, collapse = ", "), .groups = "drop")
```

top_terms

##	# /	A tibble: 40 x 2	2
##		topic	top_words
##		<chr></chr>	<chr></chr>
##	1	1_U.S. Electi~	trump, election, president, biden, us, trump's, donald
##	2	2_Brexit	uk, government, could, new, last, time, make
##	3	3_Football	league, game, players, season, team, football, last
##	4	Other_1	art, london, arts, theatre, work, artists, festival
##	5	Other_10	people, health, coronavirus, home, covid-19, government, publ~

Similarly, extract mean topic proportions from θ . Again, the proportion of the Brexit topic indicates that this was probably not the best specified topic:

```
top_topics <- guardian_keyatm$theta %>%
    as_tibble(rownames = "document") %>%
    pivot_longer(-document, names_to = "topic", values_to = "theta") %>%
    group_by(topic) %>%
    summarise(mean_theta = mean(theta), .groups = "drop") %>%
    arrange(desc(mean_theta))
top_topics
```

```
## # A tibble: 40 x 2
##
     topic
                      mean theta
    <chr>
                           <dbl>
##
  1 2 Brexit
                          0.239
##
   2 3_Football
                          0.0765
##
   3 Other 34
##
                          0.0637
##
   4 Other 30
                          0.0514
##
   5 Other 14
                          0.0439
    6 Other 8
                          0.0366
##
   7 Other 22
##
                          0.0350
```


To create a similar plot as before, we can join both tibbles:

```
top_topics %>%
  left_join(top_terms, by = "topic") %>%
  mutate(topic = reorder(topic, mean_theta)) %>%
  ggplot(aes(topic, mean_theta, label = top_words, fill = topic)) +
  geom_col(show.legend = FALSE) +
  geom_text(hjust = 0, nudge_y = 0.0005, size = 3) +
  coord_flip() +
  scale_y_continuous(expand = c(0, 0), limits = c(0, 0.4), labels = scales::percent) +
  theme_bw() +
  theme(panel.grid.minor = element_blank(),
        panel.grid.major = element_blank()) +
  labs(x = NULL, y = expression(theta))
```


2 Brexit			uk government could new last time make	
3 Football	league, game, players, season, team, football, last		an, go rennent, oosis, nen, iser, inne, mare	
Other 34	like, time, get, people, i'm, back, going			I
Other 30	first, years, new, world, back, time, another			
Other 14	people, says, many, like, us, work, time			I
Other 8	like, people, think, says, get, really, that's			
Other 22	book, world, us, read, like, story, books			
Other 17	coronavirus, cases, new, people, virus, health, covid-19			
1_U.S. Election	trump, election, president, biden, us, trump's, donald			
Other_9	film, show, series, tv, bbc, comedy, new			
Other_15	government, economy, economic, people, crisis, year, pandemic			
Other_10	people, health, coronavirus, home, covid-19, government, public			
Other_3	report, investigation, inquiry, company, public, told, guardian			
Other_7 -	family, died, years, london, life, school, children			
Other_36	sea, water, two, space, garden, beach, island			
Other_28 -	police, people, officers, protests, violence, us, protesters			
Other_32	court, case, justice, legal, prison, sexual, family			
Other_21	business, lockdown, people, says, customers, online, businesses			
Other_37	pay, money, people, paid, tax, scheme, income			
Other_41	vaccine, health, people, covid-19, virus, testing, disease			
Other_33	says, im, like, years, people, lite, tamily			
Other_31	media, news, facebook, social, online, twitter, content			
Other_27	women, black, people, white, racism, men, remain			
Other_20	care, nealth, hospital, hhs, patients, starr, medical			
Other_0	elimate species equiremental found years study feed			
Other_10	climate, species, environmental, round, years, study, rood			
Other_23	studente schoel ohidren schoele education university universities			
Other 19-	food add oil cook minutes heat make			
Other 5	australia australian novernment new australia's morrison victoria			
Other 1	art london arts theatre work artists festival			
Other 26	johnson government minister prime cummings boris secretary			
Other 25	china chinese us hong foreign kong security			
Other 24	people, political, war, countries, country, european, migrants			
Other 13	fire, water, california, people, state, fires, across			
Other 2	climate, energy, emissions, carbon, gas, change, oil			
Other_23	fashion, masks, wear, mask, new, wearing, says			
Other_18	local, city, london, people, transport, council, train			
Other_11	workers, work, working, employees, app, staff, company			
Other_35	australia, australian, party, government, minister, morrison, labor			
0.0	% 10.0%	20.0%	30.0%	40.0

Validating topic models

Validating topic models

As topic models will *always* output the desired number of topics, again, validation is key. For topic models, the following validation steps are common:

- Computing data fit indices (e.g., semantic coherence, exclusivity)
- Manually labelling and intepreting topics (duh)
- Investigating meaningful relationships of results with other variables in the data (e.g., a terrorism topic should lead to higher scores in the aftermath of terrorist attacks)

Furthermore, for manual validation, we usually are not able to provide gold standards, as we did not define the topics ourselves. However, two methods were developed to manually validate how good topics can be interpreted by humans:

- **Word intrusion test**: Randomly draw n words with high probabilities and 1 word with low probability from the same topic distribution. Human coders should then be able to identify the *intruder* word.
- **Topic intrusion test**: Randomly drawn n topics with high probabilities and 1 topic with low probability from the same document distribution. Human coders should then be able to identify the *intruder* topic after reading through the document.
- In both cases, we can then compute the precision of repeated word/topic intrusion tests for multiple topics/documents.

Validating topic models with oolong

Both tests are implemented in the oolong package know from last time:

library(oolong)

The workflow is quite simple:

- Use wi() (word intrusion), wsi() (word-set intrusion; variant of word intrusion with sets of words instead of single words), and ti() to create the test object with the model object as input.
- Use the associated method to do the actual test (\$do_xxx()).
- \$lock() the object to display results.
- oolong() objects can be cloned before doing the test to accomodate for multiple coders with clone_oolong().
- Use summarize_oolong() to compare the results of multiple tests.

Word intrusion tests

Example: Word intrusion test

```
# Create and clone objects
wi_test_coder_1 <- wi(guardian_stm_40_cov, userid = "Coder 1")
wi_test_coder_2 <- clone_oolong(wi_test_coder_1, userid = "Coder 2")
# Do the test
wi_test_coder_1$do_word_intrusion_test()
wi_test_coder_2$do_word_intrusion_test()
# Lock
wi_test_coder_1$lock()
wi_test_coder_2$lock()
# Summarize
summarize_oolong(wi_test_coder_1, wi_test_coder_2)
```

Word intrusion tests

Example: Word intrusion test

oolong

pic 4 of 40	
Finish	

Which of the following is an intruder word?

- economic
 government
- pay
- money
- media
- economy

Word-set intrusion tests

Exercise 2: Validating topic models

Create an oolong object with wsi() on the guardian_stm_40_cov model and perform a word-set intrusion test. Good luck!

Topic intrusion tests

Exercise 3: Validating topic models

Create an oolong object with ti() on the guardian_stm_40_cov model and perform a topic intrusion test. Good luck!

Thanks

Credits:

- Slides created with xaringan
- Title image by Marjan Blahn / Unsplash
- Coding cat gif by Memecandy/Giphy