
Studying News Use with
Computational Methods
Text Analysis in R, Part I: Text Description, Word
Metrics and Dictionary Methods

Julian Unkel
University of Konstanz
2021/06/21

1 / 68

At it's most basic, automated content analysis is just
counting stuff: most frequent words, co-occuring
words, specific words, etc.

We can already learn a lot about a corpus of
documents just by looking at word metrics and
applying dictionaries. Even if they are not part of the
main research interest, it still might prove useful to
use the following methods to describe and
familiarize yourself with a large text corpus.

Our agenda today:

Text description and word metrics
Frequencies
Keywords in context
Collocations
Cooccurences
Lexical complexity
Keyness

Dictionary-based methods
Basics
Applying categorical dictionaries
Applying weighted dictionaries
Validating dictionaries

Agenda

2 / 68

Text description and word metrics

3 / 68

Setup
We will be mainly using the packages known from the last few sessions:

library(tidyverse)
library(tidytext)
library(quanteda)

Package version: 3.0.0
Unicode version: 13.0
ICU version: 69.1

Parallel computing: 16 of 16 threads used.

See https://quanteda.io for tutorials and examples.

library(quanteda.textstats)

4 / 68

Setup
We will be working with a sample of 10,000 Guardian articles published in 2020:

guardian_tibble <- readRDS("data/guardian_sample_2020.rds")

5 / 68

Setup
Before we start, let's add a column indicating the day the respective article was published in an extra column
(you'll soon enough see why):

guardian_tibble <- guardian_tibble %>%
 mutate(day = lubridate::date(date))

guardian_tibble %>%
 select(date, day)

A tibble: 10,000 x 2
date day
<dttm> <date>
1 2020-01-01 00:09:23 2020-01-01
2 2020-01-01 00:34:18 2020-01-01
3 2020-01-01 02:59:09 2020-01-01
4 2020-01-01 06:20:56 2020-01-01
5 2020-01-01 07:00:58 2020-01-01
6 2020-01-01 08:00:01 2020-01-01
7 2020-01-01 08:50:00 2020-01-01
8 2020-01-01 09:01:00 2020-01-01
9 2020-01-01 10:00:02 2020-01-01 6 / 68

Preprocessing
Just like last time, we'll do some preprocessing of our data by creating a corpus object, tokenizing all documents
and creating a DFM.

Keep all of these objects, as different methods require differently structured data.

guardian_corpus <- corpus(guardian_tibble,
 docid_field = "id", text_field = "body")

guardian_tokens <- guardian_corpus %>%
 tokens(remove_punct = TRUE, remove_symbols = TRUE, remove_numbers = TRUE,
 remove_url = TRUE, remove_separators = TRUE) %>%
 tokens_tolower()

guardian_dfm <- guardian_tokens %>%
 dfm()

7 / 68

Word frequencies
featfreq() counts all features. Not that the resulting list is not sorted:

featfreq(guardian_dfm)

there is a message woven
18152 77962 187892 930 21
into everything the prime minister
11856 1856 453840 2482 3635
says about these fires carefully
9596 20189 6695 394 281
threaded through every pronouncement that
9 6086 4226 5 86117
they are not extraordinary unprecedented
28376 39966 32524 476 526
with skill of man who
54959 141 205550 2789 24401
made pre-politics career messaging scott
6620 1 1314 155 517
morrison's narrative disaster in no
86 381 490 157939 12547
way different from disasters australians
6723 2873 37464 102 590 8 / 68

Word frequencies
topfeatures() returns the n most common features (default: 10):

topfeatures(guardian_dfm)

the to of and a in that is for on
453840 225486 205550 197056 187892 157939 86117 77962 75739 66469

9 / 68

Word frequencies
Some more options, including grouping for docvars, are available with textstat_frequency():

textstat_frequency(guardian_dfm, n = 5, groups = pillar)

feature frequency rank docfreq group
1 the 73441 1 1713 Arts
2 of 38415 2 1708 Arts
3 a 37528 3 1711 Arts
4 and 37483 4 1711 Arts
5 to 33283 5 1708 Arts
6 the 31317 1 860 Lifestyle
7 a 18502 2 842 Lifestyle
8 and 18090 3 850 Lifestyle
9 to 17431 4 854 Lifestyle
10 of 15079 5 846 Lifestyle
11 the 253420 1 5325 News
12 to 127021 2 5321 News
13 of 110784 3 5319 News
14 and 100977 4 5317 News
15 a 91590 5 5301 News
16 the 42100 1 845 Opinion
17 to 21923 2 845 Opinion 10 / 68

Word frequencies
Let's get some more useful results by removing stopwords:

dfm_remove(guardian_dfm, stopwords("english")) %>%
 textstat_frequency(n = 5, groups = pillar)

feature frequency rank docfreq group
1 one 3929 1 1330 Arts
2 like 3124 2 1096 Arts
3 people 2883 3 909 Arts
4 just 2389 4 993 Arts
5 says 2376 5 504 Arts
6 one 1807 1 647 Lifestyle
7 can 1787 2 592 Lifestyle
8 says 1551 3 263 Lifestyle
9 like 1499 4 566 Lifestyle
10 people 1298 5 433 Lifestyle
11 said 28843 1 4490 News
12 people 13557 2 3579 News
13 one 8569 3 3514 News
14 government 8521 4 2841 News
15 new 8351 5 3095 News
16 people 2404 1 650 Opinion 11 / 68

Word frequencies
More relevant features emerge after some strong trimming of the DFM:

dfm_trim(guardian_dfm, max_docfreq = .20, docfreq_type = "prop") %>%
 textstat_frequency(n = 3, groups = pillar)

feature frequency rank docfreq group
1 film 1686 1 558 Arts
2 show 1480 2 612 Arts
3 music 1358 3 440 Arts
4 fashion 508 1 99 Lifestyle
5 food 498 2 194 Lifestyle
6 add 430 3 139 Lifestyle
7 trump 4029 1 826 News
8 police 3621 2 926 News
9 cases 3443 3 1249 News
10 trump 808 1 184 Opinion
11 political 660 2 291 Opinion
12 black 632 3 150 Opinion
13 league 2266 1 684 Sport
14 players 1962 2 669 Sport
15 season 1824 3 688 Sport

12 / 68

Keywords in context
Use kwic() to get a view of up to 1000 occurences of a keyword in a given context window (default: 5 words
before/after):

kwic(guardian_tokens, "belarus") %>%
 as_tibble()

A tibble: 66 x 7
docname from to pre keyword post pattern
<chr> <int> <int> <chr> <chr> <chr> <fct>
1 959 609 609 and europe we went ~ belarus she said it was rea~ belarus
2 1633 445 445 jack on a stick as belarus gives the uk a desu~ belarus
3 2033 321 321 that were stuck in ~ belarus and they were after~ belarus
4 2637 112 112 wants noah explaine~ belarus president alexander~ belarus
5 2945 62 62 the authoritarian p~ belarus and turkmenistan ov~ belarus
6 2978 196 196 countries president~ belarus has made the claim ~ belarus
7 3656 54 54 sporting plans alth~ belarus burundi tajikistan ~ belarus
8 3692 14 14 include thousands t~ belarus for ve day parade d~ belarus
9 3694 133 133 looked very differe~ belarus where elderly veter~ belarus
10 3901 350 350 action beyond the b~ belarus haaland's desire to~ belarus
... with 56 more rows

13 / 68

Keywords in context
Use phrase() for multi-word keywords and set window size with window:

kwic(guardian_tokens, phrase("champions league"),
 window = 3) %>%
 as_tibble()

A tibble: 321 x 7
docname from to pre keyword post pattern
<chr> <int> <int> <chr> <chr> <chr> <fct>
1 20 126 127 restart of the champions l~ all competition~ champions ~
2 29 171 172 to swap probab~ champions l~ qualification a~ champions ~
3 42 1331 1332 performance in~ champions l~ fixture suggest~ champions ~
4 96 419 420 the league and champions l~ and his selecti~ champions ~
5 113 45 46 scored in genk~ champions l~ defeat by liver~ champions ~
6 138 148 149 qualify for the champions l~ victory against~ champions ~
7 138 396 397 rather than the champions l~ however there w~ champions ~
8 155 202 203 scored in barc~ champions l~ final defeat to champions ~
9 155 312 313 victory in the champions l~ final in june champions ~
10 223 480 481 bus carrying l~ champions l~ winners drive p~ champions ~
... with 311 more rows

14 / 68

Collocations
Collocations define words directly appearing after each other and can be computed with
textstat_collocations(). The output is sorted by the parameter, which increases if exactly this
combination of words is more common than the same words appearing in other collocations. Note that this can
be very computationally expensive, so adjust the min_count() parameter accordingly:

guardian_tokens %>%
 tokens_remove(stopwords("english")) %>%
 textstat_collocations(min_count = 100) %>%
 as_tibble()

A tibble: 615 x 6
collocation count count_nested length lambda z
<chr> <int> <int> <dbl> <dbl> <dbl>
1 prime minister 1880 0 2 8.92 169.
2 last week 1567 0 2 5.33 168.
3 last year 1694 0 2 4.95 167.
4 social media 1074 0 2 6.67 157.
5 public health 1196 0 2 5.17 149.
6 chief executive 986 0 2 8.39 149.
7 white house 871 0 2 6.45 145.
8 years ago 1081 0 2 6.22 142.

λ

15 / 68

Collocations
We can look for multi-word collocations of any size by adjusting the size parameter:

guardian_tokens %>%
 tokens_remove(stopwords("english")) %>%
 textstat_collocations(min_count = 10, size = 4) %>%
 as_tibble()

A tibble: 653 x 6
collocation count count_nested length lambda z
<chr> <int> <int> <dbl> <dbl> <dbl>
1 andrés manuel lópez obrador 18 0 4 12.9 2.96
2 new york los angeles 10 0 4 10.9 2.93
3 prime minister narendra modi 19 0 4 11.0 2.82
4 crown prince mohammed bin 16 0 4 9.91 2.81
5 kenan malik observer columnist 12 0 4 10.0 2.55
6 prime minister boris johnson 52 0 4 6.42 2.39
7 department education spokesperson said 13 0 4 4.41 2.26
8 prime minister viktor orbán 20 0 4 8.51 2.20
9 thousands inboxes every weekday 20 0 4 7.51 2.06
10 ruby princess cruise ship 13 0 4 5.81 2.04
... with 643 more rows

16 / 68

Cooccurences
Cooccurences look for words appearing in the same document (and not just directly after each other).

Cooccurences are best represented as a feature cooccurence matrix of size n_features * n_features. Create
one with fcm(). Again, to decrease computational load, some trimming of the DFM may be useful:

guardian_fcm <- guardian_dfm %>%
 dfm_remove(stopwords("english")) %>%
 dfm_trim(min_termfreq = 100, max_docfreq = .25, docfreq_type = "prop") %>%
 fcm()

17 / 68

Cooccurences

guardian_fcm

Feature co-occurrence matrix of: 6,009 by 6,009 features.
features
features message everything prime minister says fires carefully
message 293 237 436 567 1206 81 34
everything 0 590 468 616 4777 128 77
prime 0 0 2576 7549 2154 119 104
minister 0 0 0 4361 2928 197 156
says 0 0 0 0 42752 430 493
fires 0 0 0 0 0 1414 7
carefully 0 0 0 0 0 0 21
extraordinary 0 0 0 0 0 0 0
unprecedented 0 0 0 0 0 0 0
skill 0 0 0 0 0 0 0
features
features extraordinary unprecedented skill
message 76 69 17
everything 156 98 51
prime 151 226 21
minister 193 271 21
says 696 652 243 18 / 68

Cooccurences
A simple way to get at the most common cooccurences is by transforming the FCM into a Tibble with the tidy()
function:

guardian_fcm %>%
 tidy() %>%
 filter(document != term) %>%
 arrange(desc(count))

A tibble: 16,598,119 x 3
document term count
<chr> <chr> <dbl>
1 died hospital 25139
2 died family 16223
3 president trump 15829
4 trump biden 14949
5 hospital family 14809
6 trump trump's 13384
7 hospital covid-19 12021
8 died worked 12013
9 trump election 11424
10 died covid-19 11209
... with 16,598,109 more rows 19 / 68

Lexical complexity
Lexical complexity may be indicated through a document's readability and lexical diversity.
textstat_readability() offers several readability measures, by default the Flesch Reading Ease which is
based on the average sentence length and average syllable count per word (note that we need to use the corpus
object in this case, as sentences are preserved here). Lower values indicate a lower readability:

textstat_readability(guardian_corpus) %>%
 as_tibble()

A tibble: 10,000 x 2
document Flesch
<chr> <dbl>
1 1 39.6
2 2 60.7
3 3 48.7
4 4 52.5
5 5 42.0
6 6 46.9
7 7 45.8
8 8 55.2
9 9 59.9
10 10 47.6 20 / 68

Lexical complexity
Accordingly, textstat_lexdiv() offers several measures to quantify the lexical diversity of documents. By
default, the Type-Token-Ratio (unique tokens divided by number of tokens per document) is computed. Note that
the TTR is heavily influenced by document length:

textstat_lexdiv(guardian_dfm) %>%
 as_tibble()

A tibble: 10,000 x 2
document TTR
<chr> <dbl>
1 1 0.453
2 2 0.634
3 3 0.438
4 4 0.669
5 5 0.429
6 6 0.427
7 7 0.657
8 8 0.509
9 9 0.508
10 10 0.491
... with 9,990 more rows 21 / 68

Keyness
Finally, keyness (and accordingly textstat_keyness()) presents a measure of the distinctivness of words for a
certain (group of) documents as compared to other documents. For example, we can group our corpus by the
pillar (Arts, Lifestyle, News, Opinion, or Sport) and get to the most distinctive terms for Sport documents by:

guardian_dfm %>%
 dfm_group(pillar) %>%
 textstat_keyness(target = "Sport") %>%
 as_tibble()

A tibble: 135,480 x 5
feature chi2 p n_target n_reference
<chr> <dbl> <dbl> <dbl> <dbl>
1 league 14537. 0 2266 298
2 players 12498. 0 1962 270
3 game 8593. 0 1813 754
4 season 8592. 0 1824 770
5 football 6760. 0 1299 420
6 team 6221. 0 1770 1309
7 cup 6182. 0 1019 184
8 club 6046. 0 1292 554
9 player 4816. 0 828 181
10 ball 4537. 0 803 197 22 / 68

Text description and word metrics
Exercise 1: Text description

btw_tweets.csv (on ILIAS) contains 1377 tweets by the three German chancellor candidates Annalena
Baerbock, Armin Laschet & Olaf Scholz made in 2021, as obtained by Twitter's Academic API.

Load the tweets into R and do the necessary preprocessing
Investigate the tweets using the text and word metrics you just learned
What are the most common words?
What are the most common collocations?
What are the most distinct words per account?

23 / 68

Dictionary-based methods

24 / 68

Basics
Dictionaries contain a list of predefined words (or other features) that should represent a latent construct. This is
probably the simplest way to automatically anaylze texts for the presence of latent constructs.

At their core, dictionary-based methods are just counting the presence of the dictionary words in the
documents. Usually, this is based on two (implicit) assumptions:

Bag-of-words: Just like with many other automated text analysis methods, word order and thus semantical
and syntactical relationships are ignored.
Additivity: The more words from the dictionary are found in a document, the more pronounced the latent
construct.

25 / 68

Terminology
Dictionaries are commonly differentiated along two dimensions, the first being the source of the dictionary:

Organic dictionaries are created for the specific research task from scratch, for example by theoretical
assumptions about the latent construct(s), investigating the most common features, etc.
Off-the-shelf dictionaries are pre-made, (hopefully) pre-validadated dictionaries used for specific purposes,
for example sentiment analysis.

Second, dictionaries may be either categorical or weighted:

In categorical dictionaries, every word is valued the same.
In weighted dictionaries, weights are assigned to words. For example, in a positivity dictionary, "love" may
have a higher weight than "like".

26 / 68

Applying categorical dictionaries
We start by applying categorical dictionaries to texts. In quanteda, dictionaries are simply created by passing a
named list of constructs represented in the dictionary, with each construct represent by a character vector of
words.

For demonstration purposes, we create our own dictionary from the populism dictionary by Rooduijn & Pauwels
(2011). Note that dictionary terms may include asterisks for placeholders:

pop_words <- list(populism = c(
 "elit*", "consensus*", "undemocratic*", "referend*", "corrupt*",
 "propagand*", "politici*", "*deceit*", "*deceiv*", "shame*", "scandal*",
 "truth*", "dishonest*", "establishm*", "ruling*")
)

27 / 68

https://www.tandfonline.com/doi/full/10.1080/01402382.2011.616665

Applying categorical dictionaries
We create the actual dictionary by using quanteda's dictionary() function.

pop_dictionary <- dictionary(pop_words)
pop_dictionary

Dictionary object with 1 key entry.
- [populism]:
- elit*, consensus*, undemocratic*, referend*, corrupt*, propagand*, politici*, *deceit*, *deceiv*,

28 / 68

Applying categorical dictionaries
Applying the dictionary to our corpus is simple as well: We use the function dfm_lookup() on our DFM
(remember, word order doesn't matter). This counts out all features in the dictionary and reduces the
dimensionality of the DFM to n_documents * n_dictionary_constructs:

guardian_pop <- dfm(guardian_dfm) %>%
 dfm_lookup(pop_dictionary)

guardian_pop

Document-feature matrix of: 10,000 documents, 1 feature (74.61% sparse) and 5 docvars.
features
docs populism
1 0
2 0
3 0
4 0
5 0
6 0
[reached max_ndoc ... 9,994 more documents]

29 / 68

Applying categorical dictionaries
tidytext's tidy() function is again helpful in transforming and analyizing the results. For example, we can
sort by count to get the document ids of the documents with the highest count of dictionary words:

guardian_pop %>%
 tidy() %>%
 arrange(desc(count))

A tibble: 2,539 x 3
document term count
<chr> <chr> <dbl>
1 526 populism 16
2 4257 populism 16
3 5610 populism 14
4 4799 populism 13
5 8717 populism 13
6 2727 populism 12
7 9436 populism 12
8 5169 populism 11
9 5761 populism 11
10 6214 populism 11
... with 2,529 more rows

30 / 68

Applying categorical dictionaries
Let's take a look at the article with highest count of populism terms (i.e., the most populist article in our corpus):

guardian_tibble %>%
 filter(id == 526)

A tibble: 1 x 7
id title body url date pillar day
<int> <chr> <chr> <chr> <dttm> <chr> <date>
1 526 ‘Middle Cl~ Democrats ~ https://w~ 2020-01-20 11:00:24 Opini~ 2020-01-20

It's the article ‘Middle Class’ Joe Biden has a corruption problem – it makes him a weak candidate | Zephyr
Teachout, an opinion piece about Joe Biden and the US election.

31 / 68

https://www.theguardian.com/commentisfree/2020/jan/20/joe-biden-corruption-donald-trump

Applying categorical dictionaries
Relying on counts does ignore document lenght, though, so longer documents have a per se higher chance of
including dictionary terms. It is thus a good idea to weight the DFM beforehand to get the share of dictionary
terms among the full document:

guardian_pop_prop <- guardian_dfm %>%
 dfm_weight(scheme = "prop") %>%
 dfm_lookup(pop_dictionary)

guardian_pop_prop

Document-feature matrix of: 10,000 documents, 1 feature (74.61% sparse) and 5 docvars.
features
docs populism
1 0
2 0
3 0
4 0
5 0
6 0
[reached max_ndoc ... 9,994 more documents]

32 / 68

Applying categorical dictionaries
Let's check again the documents with the highest share of populist terms:

guardian_pop_prop %>%
 tidy() %>%
 arrange(desc(count))

A tibble: 2,539 x 3
document term count
<chr> <chr> <dbl>
1 4799 populism 0.0216
2 526 populism 0.0171
3 5141 populism 0.0163
4 5761 populism 0.0146
5 4257 populism 0.0143
6 6259 populism 0.0139
7 188 populism 0.0136
8 5169 populism 0.0130
9 4817 populism 0.0126
10 6597 populism 0.0124
... with 2,529 more rows

33 / 68

Applying categorical dictionaries
One handy tool in applying dictionaries is dfm_group(). For example, we can group the DFM by day before
applying the dictionary to get the share of populism in Guardian articles on each day:

guardian_pop_by_day <- guardian_dfm %>%
 dfm_group(day) %>%
 dfm_weight(scheme = "prop") %>%
 dfm_lookup(pop_dictionary)

guardian_pop_by_day

Document-feature matrix of: 366 documents, 1 feature (0.00% sparse) and 1 docvar.
features
docs populism
2020-01-01 0.0006833869
2020-01-02 0.0004933129
2020-01-03 0.0007507508
2020-01-04 0.0004430268
2020-01-05 0.0002653576
2020-01-06 0.0012358648
[reached max_ndoc ... 360 more documents]

34 / 68

Applying categorical dictionaries
Let's plot this. When would we expect the highest share of populist terms?

p_pop_guardian_by_day <- guardian_pop_by_day %>%
 tidy() %>%
 mutate(day = as.Date(document)) %>%
 ggplot(aes(x = day, y = count)) +
 geom_line() +
 theme_classic() +
 scale_y_continuous(labels = scales::percent) +
 labs(x = NULL, y = "Share of populism terms")

35 / 68

Applying categorical dictionaries

p_pop_guardian_by_day

36 / 68

Applying categorical dictionaries
Exercise 2: Applying categorical dictionaries

The Bing Liu opinion lexicon is a widely used, multi-categorical dictionary for sentiment analysis, including ~6000
terms indicating positive and negative sentiment. The word lists are stored in separate files (positive-
words.txt and negative-words.txt) on ILIAS.

Load them into R with scan():

positive_words <- scan("data/positive-words.txt", what = character(), skip = 30)
negative_words <- scan("data/negative-words.txt", what = character(), skip = 31)

37 / 68

https://www.cs.uic.edu/~liub/FBS/sentiment-analysis.html#lexicon

Applying categorical dictionaries
Exercise 2: Applying categorical dictionaries

Then:

create a quanteda dictionary with the two categories "positive" and "negative"
apply the dictionary to the Guardian corpus
investigate the difference between weighting the DFM proportionally before and after applying the
dictionary
plot the sentiment by day

38 / 68

Applying weighted dictionaries
Applying weighted dictionaries is simple as well, but relies on tidytext again. tidytext() also provides a
function get_sentiments() to access common sentiment dictionaries. The AFINN dictionary is one widely used
weighted dictionary:

get_sentiments("afinn")

A tibble: 2,477 x 2
word value
<chr> <dbl>
1 abandon -2
2 abandoned -2
3 abandons -2
4 abducted -2
5 abduction -2
6 abductions -2
7 abhor -3
8 abhorred -3
9 abhorrent -3
10 abhors -3
... with 2,467 more rows

39 / 68

Applying weighted dictionaries
In the tidytext style, applying dictionaries is just joining them with an unnested text corpus. Note that using
inner_join() throws out all terms not found in the dictionary - if you want to preserve those terms, use
left_join() instead:

guardian_afinn_sentiments <- guardian_tibble %>%
 unnest_tokens(word, body) %>%
 select(id, day, word) %>%
 inner_join(get_sentiments("afinn"))

Joining, by = "word"

guardian_afinn_sentiments

A tibble: 421,362 x 4
id day word value
<int> <date> <chr> <dbl>
1 1 2020-01-01 carefully 2
2 1 2020-01-01 disaster -2
3 1 2020-01-01 no -1
4 1 2020-01-01 disasters -2
5 1 2020-01-01 terrible -3 40 / 68

Applying weighted dictionaries
We can now use tidyverse function to group and summarise sentiment, for example per day:

p_guardian_sentiment_afinn <- guardian_afinn_sentiments %>%
 group_by(day) %>%
 summarise(sentiment = mean(value)) %>%
 ggplot(aes(x = day, y = sentiment)) +
 geom_line(color = "blue") +
 geom_hline(yintercept = 0, linetype = "dashed") +
 theme_classic() +
 labs(x = NULL, y = "Sentiment")

41 / 68

Applying weighted dictionaries

p_guardian_sentiment_afinn

42 / 68

Validating dictionaries
Now to the one million dollar question: Do the values we just computed actually represent sentiment?

Validating the results is arguably the most important task of not just dictionary-based methods, but also
automated content analysis in general. Three common ways of validations include:

Comparing the results with (manual) gold standards
Computing data fit indices
Investigating meaningful relationships of results with other variables in the data (e.g., a terrorism dictionary
should lead to higher scores in the aftermath of terrorist attacks)

43 / 68

Validating dictionaries with oolong
The oolong package provides a simple way for gold-standard validation directly in R. As it is still in early active
development, the latest development version is usually the best choice:

remotes::install_github("chainsawriot/oolong")

As always, load it with library():

library(oolong)

44 / 68

https://github.com/chainsawriot/oolong

Validating dictionaries with oolong
We first create a random sample of our data for the gold standard test with the gs() function, indicating the
construct to validate. Note that it is suggested to use at least 1% of the data for validation, but for demonstration
purposes, let's stick to a smaller number of 20 articles:

gs_test <- gs(input_corpus = guardian_corpus, construct = "positive",
 exact_n = 20, userid = "Julian")

gs_test

##

-- oolong (gold standard generation) ---

:) Julian

i GS: n = 20, 0 coded.

i Construct: positive.

##

-- Methods --
45 / 68

Validating dictionaries with oolong
As outlined in the resulting object, we can now start coding the data (and thus providing a manual gold standard)
by using the method $do_gold_standard_test():

gs_test$do_gold_standard_test()

This opens a coding window in RStudio's Viewer pane:

46 / 68

Validating dictionaries with oolong

47 / 68

Validating dictionaries with oolong
After you have finished coding the data, $lock() it to perform the actual gold standard test:

gs_test$lock()

48 / 68

Validating dictionaries with oolong
We can now apply our dictionary as before by using the $turn_gold() method. This creates a quanteda
corpus:

gs_corpus <- gs_test$turn_gold()
gs_corpus

Corpus consisting of 20 documents and 1 docvar.
2476 :
"A meat-eating dinosaur with a feathered body, iron grip and ..."

2501 :
"Three weeks ago, Tony Robinson completed a six-part series f..."

4695 :
"My husband and I run a quirky, colourful music bar in Herefo..."

487 :
"It’s time to go rogue with your eyeliner. Many SS20 catwalks..."

8787 :
"The funniest sketch I’ve ever seen … Siblings – a hilarious ..."
49 / 68

Validating dictionaries with oolong
Let's apply the dictionary just as before:

gs_dict <- gs_corpus %>%
 tokens() %>%
 dfm() %>%
 dfm_weight(scheme = "prop") %>%
 dfm_lookup(liu_dict)

gs_dict

Document-feature matrix of: 20 documents, 2 features (2.50% sparse) and 1 docvar.
features
docs positive negative
2476 0.02156334 0.01617251
2501 0.02357724 0.01788618
4695 0.02657807 0.02214839
487 0.04215852 0.02866779
8787 0.01980198 0.03217822
2874 0.03694268 0.05095541
[reached max_ndoc ... 14 more documents]

50 / 68

Validating dictionaries with oolong
We need one value per document to compare our manual codings to:

gs_values <- gs_dict %>%
 convert("data.frame") %>%
 mutate(sentiment = positive - negative) %>%
 pull(sentiment)

gs_values

[1] 0.0053908356 0.0056910569 0.0044296788 0.0134907251 -0.0123762376
[6] -0.0140127389 -0.0078843627 0.0189393939 0.0091324201 0.0132248220
[11] -0.0241545894 -0.0245231608 0.0035569106 -0.0186766275 -0.0126715945
[16] 0.0009569378 -0.0103412616 0.0017889088 -0.0063391442 -0.0343137255

51 / 68

Validating dictionaries with oolong
Finally, use the summarize_oolong() function to get the test results:

gs_results <- summarize_oolong(gs_test, target_value = gs_values)

gs_results

52 / 68

Validating dictionaries with oolong
The summary objects also includes a plot() method that displays various important measures at once:

plot(gs_results)

53 / 68

Dictionaries and beyond
Improve dictionary-based methods by:

Including negating bigrams
Removing common sources of error (phrases like "good bye", etc.)
Minding the context the dictionary was developed for
Always (re-)validating dictionaries

Dictionaries provide a simple way for classifying documents into latent constructs. Supervised machine learning
classification may drastically improve such classifications, but also come with increased effort. For example, look
at Rudkowsky et al., 2018 for a word embeddings approach towards sentiment analysis.

54 / 68

https://www.tandfonline.com/doi/full/10.1080/19312458.2018.1455817

Exercise solutions

55 / 68

Exercise solutions
Exercise 1: Text description

First, load the tweets (remember to explicitly read in Twitter IDs as character):

btw_tweets <- read_csv("data/tweets_btw.csv",
 col_types = list(id = col_character()))

Then, create a corpus:

btw_corpus <- corpus(btw_tweets, docid_field = "id", text_field = "text")

56 / 68

Exercise solutions
There are of course multiple possibilites to text preprocessing. This way, we remove most of (probably)
unwanted features:

btw_tokens <- tokens(btw_corpus,
 remove_punct = TRUE, remove_symbols = TRUE,
 remove_numbers = TRUE, remove_url = TRUE,
 remove_separators = TRUE) %>%
 tokens_tolower() %>%
 tokens_remove(c(stopwords("german", "nltk"), "rt", "#*", "@*")) %>%
 tokens_select(min_nchar = 2) %>%
 tokens_keep("\\w+", valuetype = "regex")

We will also need a DFM:

btw_dfm <- dfm(btw_tokens)

57 / 68

Exercise solutions
The rest is just applying the various text and word metrics function. For example, get a list of most frequent
words per account:

textstat_frequency(btw_dfm, n = 3, groups = author)

feature frequency rank docfreq group
1 the 26 1 21 ABaerbock
2 heute 23 2 23 ABaerbock
3 mehr 22 3 21 ABaerbock
4 heute 32 1 30 ArminLaschet
5 the 23 2 8 ArminLaschet
6 ministerpräsident 22 3 22 ArminLaschet
7 heute 85 1 81 OlafScholz
8 mehr 76 2 67 OlafScholz
9 müssen 66 3 63 OlafScholz

58 / 68

Exercise solutions
Or all collocations in the tweets:

textstat_collocations(btw_tokens)

collocation count count_nested length lambda z
1 ab uhr 17 0 2 6.394060 16.01189
2 bürger innen 16 0 2 5.769122 14.72774
3 sagt bundesfinanzminister 13 0 2 5.455357 14.10808
4 herzlichen glückwunsch 15 0 2 8.716410 13.77752
5 geht's los 12 0 2 7.930611 13.42734
6 unserer gesellschaft 10 0 2 5.676450 13.21986
7 bürgerinnen bürger 12 0 2 7.832576 12.93256
8 gleich geht's 8 0 2 6.689422 12.36857
9 live dabei 8 0 2 5.419750 11.97853
10 dafür sorgen 11 0 2 6.067464 11.93917
11 vielen dank 7 0 2 6.261835 11.88686
12 europäische union 7 0 2 6.153480 11.80651
13 gutes gespräch 6 0 2 6.469644 11.37955
14 seit jahren 7 0 2 5.498415 11.16812
15 of the 9 0 2 4.135198 10.64397
16 gesellschaft respekts 6 0 2 6.237010 10.63205
[reached 'max' / getOption("max.print") -- omitted 665 rows] 59 / 68

Exercise solutions
For keyness, you first need to group the DFM per author and then set the target account:

btw_dfm %>%
 dfm_group(author) %>%
 textstat_keyness(target = "ABaerbock")

feature chi2 p n_target n_reference
1 from 25.808169 3.770891e-07 9 0
2 is 23.007328 1.613850e-06 15 8
3 born 22.494735 2.107204e-06 8 0
4 klimaschutz 20.384591 6.333776e-06 14 8
5 jewish 19.187319 1.184980e-05 7 0
6 kinder 18.305508 1.881623e-05 16 12
7 to 17.086892 3.570791e-05 18 16
8 of 16.084673 6.057230e-05 21 22
9 girl 15.888712 6.717818e-05 6 0
10 herzlichen 15.709383 7.385688e-05 13 8
11 this 15.176496 9.791462e-05 8 2
12 and 13.632950 2.222504e-04 18 19
13 been 12.603943 3.849338e-04 5 0
14 deported 12.603943 3.849338e-04 5 0
15 more 12.603943 3.849338e-04 5 0 60 / 68

Exercise solutions

btw_dfm %>%
 dfm_group(author) %>%
 textstat_keyness(target = "OlafScholz")

feature chi2 p n_target n_reference
1 bundesfinanzminister 30.994409 2.587728e-08 45 0
2 uhr 22.347416 2.275190e-06 43 3
3 innen 21.986248 2.746111e-06 60 9
4 geht 20.749690 5.234004e-06 58 9
5 gesellschaft 20.142413 7.188483e-06 33 1
6 dafür 19.743496 8.856255e-06 59 10
7 respekt 18.771061 1.473867e-05 31 1
8 schaltet 15.130191 1.003456e-04 22 0
9 spd 15.015281 1.066442e-04 32 3
10 gibt 13.852374 1.977467e-04 36 5
11 schaffen 13.301928 2.651333e-04 23 1
12 live 13.100998 2.951384e-04 32 4
13 kanzlerkandidat 13.064438 3.009554e-04 19 0
14 plan 12.376033 4.348801e-04 18 0
15 sagt 11.234277 8.030039e-04 49 12
16 ganz 11.201510 8.173081e-04 29 4
17 ostdeutschland 10.311353 1.322143e-03 15 0 61 / 68

Exercise solutions

btw_dfm %>%
 dfm_group(author) %>%
 textstat_keyness(target = "ArminLaschet")

feature chi2 p n_target n_reference
1 ministerpräsident 91.332497 0.000000e+00 22 1
2 nordrhein-westfalen 69.321275 1.110223e-16 16 0
3 de 36.070796 1.902772e-09 12 3
4 gespräch 27.794642 1.348992e-07 13 7
5 modernisierungsjahrzehnt 27.315149 1.728519e-07 7 0
6 la 22.329953 2.295973e-06 7 1
7 düsseldorf 18.054805 2.146362e-05 5 0
8 nrw-ministerpräsident 18.054805 2.146362e-05 5 0
9 et 13.617375 2.241018e-04 5 1
10 tweet 13.462455 2.433851e-04 4 0
11 wolfgang 13.462455 2.433851e-04 4 0
12 minister 13.045333 3.040411e-04 7 4
13 with 10.847924 9.890656e-04 8 7
14 armin 10.508752 1.188105e-03 5 2
15 freund 9.455777 2.104851e-03 4 1
16 präsidenten 9.455777 2.104851e-03 4 1
17 austausch 9.446190 2.115881e-03 8 8 62 / 68

Exercise solutions
Exercise 2: Applying dictionaries

Create the dictionary by creating a list of the two constructs and pass it to the dictionary() function:

liu_dict <- dictionary(list(
 positive = positive_words,
 negative = negative_words
))

63 / 68

Exercise solutions
Weighting the DFM before applying the dictionary gives the proportion of construct terms in the document:

guardian_dfm %>%
 dfm_weight(scheme = "prop") %>%
 dfm_lookup(liu_dict)

Document-feature matrix of: 10,000 documents, 2 features (0.92% sparse) and 5 docvars.
features
docs positive negative
1 0.02152080 0.03873745
2 0.03658537 0.02439024
3 0.02188184 0.01969365
4 0.02828283 0.03232323
5 0.01991150 0.01880531
6 0.03152174 0.01630435
[reached max_ndoc ... 9,994 more documents]

64 / 68

Exercise solutions
Weighting the DFM after applying the dictionary gives the proportion of constructs in the document (ignoring all
other terms):

guardian_dfm %>%
 dfm_lookup(liu_dict) %>%
 dfm_weight(scheme = "prop")

Document-feature matrix of: 10,000 documents, 2 features (0.92% sparse) and 5 docvars.
features
docs positive negative
1 0.3571429 0.6428571
2 0.6000000 0.4000000
3 0.5263158 0.4736842
4 0.4666667 0.5333333
5 0.5142857 0.4857143
6 0.6590909 0.3409091
[reached max_ndoc ... 9,994 more documents]

65 / 68

Exercise solutions
If we use the second way (proportion of constructs), we only need to plot one category; 50% then marks the
transition from predominantly positive to predominantly negative sentiment:

p_guardian_sentiment_liu <- guardian_dfm %>%
 dfm_group(day) %>%
 dfm_lookup(liu_dict) %>%
 dfm_weight(scheme = "prop") %>%
 tidy() %>%
 filter(term == "positive") %>%
 mutate(day = as.Date(document)) %>%
 ggplot(aes(x = day, y = count)) +
 geom_line(color = "blue") +
 geom_hline(yintercept = .5, linetype = "dashed") +
 theme_classic() +
 scale_y_continuous(labels = scales::percent) +
 labs(x = NULL, y = "Share of positive sentiment")

66 / 68

Exercise solutions

p_guardian_sentiment_liu

67 / 68

Thanks
Credits:

Slides created with xaringan
Title image by Joshua Hoehne / Unsplash
Coding cat gif by Memecandy/Giphy

68 / 68

https://github.com/yihui/xaringan
https://unsplash.com/photos/j2Qa8culzDY
https://giphy.com/gifs/memecandy-LmNwrBhejkK9EFP504

