
Studying News Use with
Computational Methods
Text Preprocessing in R

Julian Unkel
University of Konstanz
2021/06/14

1 / 65

After having collected texts, we now need to bring
them into a form with which statistical language
models are able to work. In practice, this means
reducing our text to features (i.e., predictor
variables) used in statistical models represented by
numbers.

Such preprocessing steps includes ways to
transform text in numbers, clean, edit and reduce
the amount of features, and cast them into the data
structures ready for text models.

Our agenda today:

Text representation in R
Terminology
The tidytext approach
The quanteda approach

Basic text preprocessing
Tokenization
Document-feature matrices
Feature reduction: Trimming, stemming,
stopword removal

Advanced text preprocessing & annotation
Lemmatization
Part-of-speech tagging
Named entity recognition
Weighting
Word embeddings

Agenda

2 / 65

Terminology

3 / 65

Terminology
In automated content analysis, we are analysing corpora of documents:

Document: A single item of text as the basic unit of analysis, for example an article, a social media post, or a
speech transcript
Corpus: A structured collection of documents

Documents consist of a text string and, optionally, additional meta information:

Feature: Any document property or characteristic used in the models. Think of features as predictors or
explanatory/independent variables. For example, counts of individual words, but also any kind of document
meta information may be used as a feature.
Token: Any meaningful unit (sub-string) of a text (string). For example, we may tokenize a document into
words, sentences, letters, etc.
n-gram: Any contiguous sequence of tokens. Thus, 1-grams (unigrams) may be single words ("It's, "peanut",
"butter", "jelly", "time"), 2-grams (bigrams) sequences of two words ("It's peanut" "peanut butter", "butter
jelly", "jelly time"), etc.

4 / 65

The tidytext approach
The tidytext package was created as an Tidyverse extension to apply tidy data principles to textual data and
text analysis. Thus, a corpus is represented as a tibble, with documents as rows and document variables as
columns.

install.packages("tidytext")
library(tidytext)

The sample data guardian_sample_100.rds on ILIAS contains a sample of 100 each articles published by The
Guardian in 2020 in the news and sports section, respectively, including several additional variables (e.g.,
publication date) already in this format. Load it now:

guardian_tibble <- readRDS("data/guardian_sample_100.rds")

5 / 65

https://cran.r-project.org/web/packages/tidytext/vignettes/tidytext.html

The tidytext approach

guardian_tibble

A tibble: 200 x 6
id title body url date pillar
<int> <chr> <chr> <chr> <dttm> <chr>
1 1 Morrison’s ro~ Given the Coa~ https://www.t~ 2020-02-21 19:00:02 News
2 2 Truck drives ~ A fuel semi-t~ https://www.t~ 2020-06-01 00:24:15 News
3 3 Hong Kong blo~ Hong Kong has~ https://www.t~ 2020-05-19 08:53:48 News
4 4 Bernie Sander~ Bernie Sander~ https://www.t~ 2020-02-12 18:15:09 News
5 5 After years o~ “It’s hard to~ https://www.t~ 2020-03-30 16:30:28 News
6 6 Worrying won'~ The most anno~ https://www.t~ 2020-03-06 10:00:33 News
7 7 'Obamagate': ~ On his primet~ https://www.t~ 2020-05-14 17:29:48 News
8 8 Climate crisi~ The independe~ https://www.t~ 2020-11-06 19:00:49 News
9 9 Deportation o~ Deporting a N~ https://www.t~ 2020-11-24 17:23:40 News
10 10 Tom Hunt obit~ In many respe~ https://www.t~ 2020-06-07 09:51:40 News
... with 190 more rows

6 / 65

The quanteda approach
The most prominent package for automated content analysis in R is called quanteda (Quantitative Analysis of
Textual Data):

install.packages("quanteda")
library(quanteda)

quanteda uses it's own data type called corpus to represent text corpora. The corpus() function can be used
to create corpora from a variety of other data types, including dataframes/tibbles.

If creating a corpus from a dataframe/tibble, use the docid_field and text_field arguments to select id and
text variables, respectively:

guardian_corpus <- corpus(guardian_tibble, docid_field = "id", text_field = "body")

7 / 65

https://quanteda.io/

The quanteda approach

guardian_corpus

Corpus consisting of 200 documents and 4 docvars.
1 :
"Given the Coalition’s unconscionable track record, it is ver..."

2 :
"A fuel semi-truck drove into a George Floyd demonstration of..."

3 :
"Hong Kong has in effect banned an annual vigil for the Tiana..."

4 :
"Bernie Sanders won the New Hampshire primary on Tuesday nigh..."

5 :
"“It’s hard to put into words,” Graeme McCrabb says of seeing..."

6 :
"The most annoying question news anchors ask their correspond..."

[reached max_ndoc ... 194 more documents] 8 / 65

The quanteda approach
Use docvars() to access the document variables:

as_tibble(docvars(guardian_corpus))

A tibble: 200 x 4
title url date pillar
<chr> <chr> <dttm> <chr>
1 Morrison’s roadmap to em~ https://www.theguardian~ 2020-02-21 19:00:02 News
2 Truck drives through cro~ https://www.theguardian~ 2020-06-01 00:24:15 News
3 Hong Kong blocks Tiananm~ https://www.theguardian~ 2020-05-19 08:53:48 News
4 Bernie Sanders wins New ~ https://www.theguardian~ 2020-02-12 18:15:09 News
5 After years of drought, ~ https://www.theguardian~ 2020-03-30 16:30:28 News
6 Worrying won't help: why~ https://www.theguardian~ 2020-03-06 10:00:33 News
7 'Obamagate': Fox News fo~ https://www.theguardian~ 2020-05-14 17:29:48 News
8 Climate crisis: more tha~ https://www.theguardian~ 2020-11-06 19:00:49 News
9 Deportation of man with ~ https://www.theguardian~ 2020-11-24 17:23:40 News
10 Tom Hunt obituary https://www.theguardian~ 2020-06-07 09:51:40 News
... with 190 more rows

9 / 65

Converting between tidytext and quanteda
Both packages work fine together. Use tidytext::tidy() at any time to convert quanteda objects to
tidytext-style tibbles:

tidy(guardian_corpus)

A tibble: 200 x 5
text title url date pillar
<chr> <chr> <chr> <dttm> <chr>
1 Given the Coali~ Morrison’s road~ https://www.the~ 2020-02-21 19:00:02 News
2 A fuel semi-tru~ Truck drives th~ https://www.the~ 2020-06-01 00:24:15 News
3 Hong Kong has i~ Hong Kong block~ https://www.the~ 2020-05-19 08:53:48 News
4 Bernie Sanders ~ Bernie Sanders ~ https://www.the~ 2020-02-12 18:15:09 News
5 “It’s hard to p~ After years of ~ https://www.the~ 2020-03-30 16:30:28 News
6 The most annoyi~ Worrying won't ~ https://www.the~ 2020-03-06 10:00:33 News
7 On his primetim~ 'Obamagate': Fo~ https://www.the~ 2020-05-14 17:29:48 News
8 The independent~ Climate crisis:~ https://www.the~ 2020-11-06 19:00:49 News
9 Deporting a Nig~ Deportation of ~ https://www.the~ 2020-11-24 17:23:40 News
10 In many respect~ Tom Hunt obitua~ https://www.the~ 2020-06-07 09:51:40 News
... with 190 more rows

10 / 65

Basic text preprocessing

11 / 65

Tokenization
Tokenization describes the process of splitting texts into individual tokens, which can then be used as features
in a text analysis model. In quantitative text analysis, we usually want to split into single words, which is thus the
default option for most tokenizers.

In tidytext, the function is called unnest_tokens(). This creates a column with the single tokens and (by
default) removes the text input column (in our case, body):

guardian_tibble_tokenized <- guardian_tibble %>%
 unnest_tokens(word, body)

The resulting tibble now has one row per word. Note that by default, this removes punctuation and converts all
words to lowercase.

12 / 65

Tokenization

guardian_tibble_tokenized

A tibble: 151,589 x 6
id title url date pillar word
<int> <chr> <chr> <dttm> <chr> <chr>
1 1 Morrison’s roadma~ https://www.thegu~ 2020-02-21 19:00:02 News given
2 1 Morrison’s roadma~ https://www.thegu~ 2020-02-21 19:00:02 News the
3 1 Morrison’s roadma~ https://www.thegu~ 2020-02-21 19:00:02 News coali~
4 1 Morrison’s roadma~ https://www.thegu~ 2020-02-21 19:00:02 News uncon~
5 1 Morrison’s roadma~ https://www.thegu~ 2020-02-21 19:00:02 News track
6 1 Morrison’s roadma~ https://www.thegu~ 2020-02-21 19:00:02 News record
7 1 Morrison’s roadma~ https://www.thegu~ 2020-02-21 19:00:02 News it
8 1 Morrison’s roadma~ https://www.thegu~ 2020-02-21 19:00:02 News is
9 1 Morrison’s roadma~ https://www.thegu~ 2020-02-21 19:00:02 News very
10 1 Morrison’s roadma~ https://www.thegu~ 2020-02-21 19:00:02 News very
... with 151,579 more rows

13 / 65

Tokenization
In quanteda, we can use the tokens() function on our corpus object:

guardian_tokens <- guardian_corpus %>%
 tokens()
guardian_tokens

Tokens consisting of 200 documents and 4 docvars.
1 :
[1] "Given" "the" "Coalition's" "unconscionable"
[5] "track" "record" "," "it"
[9] "is" "very" "," "very"
[... and 1,348 more]

2 :
[1] "A" "fuel" "semi-truck" "drove"
[5] "into" "a" "George" "Floyd"
[9] "demonstration" "of" "thousands" "of"
[... and 450 more]

3 :
[1] "Hong" "Kong" "has" "in" "effect" "banned"
[7] "an" "annual" "vigil" "for" "the" "Tiananmen" 14 / 65

Tokenization
Note that tokens() by default does neither convert to lowercase nor removes punctuations. To get to the same
result as with tidytext, we have to be more explicit:

guardian_tokens <- guardian_corpus %>%
 tokens(remove_punct = TRUE) %>%
 tokens_tolower()

guardian_tokens

Tokens consisting of 200 documents and 4 docvars.
1 :
[1] "given" "the" "coalition's" "unconscionable"
[5] "track" "record" "it" "is"
[9] "very" "very" "hard" "to"
[... and 1,203 more]

2 :
[1] "a" "fuel" "semi-truck" "drove"
[5] "into" "a" "george" "floyd"
[9] "demonstration" "of" "thousands" "of"
[... and 409 more]
15 / 65

Tokenization
Tokenization options depend on the project and research interest at hand. Both functions also allow you to use
other tokenizers, for example from the tokenizers package. For example, when tokenizing tweets you may use
special tokenizers that preserve hashtags, mentions, and URLs.

In practice, I find the following steps to be a good default options:

Converting to lowercase
Removing punctuation, numbers, symbols, URLs, and separators

guardian_tokens <- guardian_corpus %>%
 tokens(remove_punct = TRUE, remove_numbers = TRUE,
 remove_symbols = TRUE, remove_url = TRUE,
 remove_separators = TRUE) %>%
 tokens_tolower()

In the follwing, we will continue mainly with quanteda, but will return to tidytext later on.

16 / 65

Tokenization
We can now also create various n-grams of choice by using tokens_ngrams() on our tokens object. For
example, for bigrams only:

guardian_tokens %>%
 tokens_ngrams(2)

Tokens consisting of 200 documents and 4 docvars.
1 :
[1] "given_the" "the_coalition's"
[3] "coalition's_unconscionable" "unconscionable_track"
[5] "track_record" "record_it"
[7] "it_is" "is_very"
[9] "very_very" "very_hard"
[11] "hard_to" "to_assume"
[... and 1,201 more]

2 :
[1] "a_fuel" "fuel_semi-truck" "semi-truck_drove"
[4] "drove_into" "into_a" "a_george"
[7] "george_floyd" "floyd_demonstration" "demonstration_of"
[10] "of_thousands" "thousands_of" "of_people"
[... and 407 more] 17 / 65

Tokenization
Unigrams, bigrams, and trigrams:

guardian_tokens %>%
 tokens_ngrams(1:3)

Tokens consisting of 200 documents and 4 docvars.
1 :
[1] "given" "the" "coalition's" "unconscionable"
[5] "track" "record" "it" "is"
[9] "very" "very" "hard" "to"
[... and 3,627 more]

2 :
[1] "a" "fuel" "semi-truck" "drove"
[5] "into" "a" "george" "floyd"
[9] "demonstration" "of" "thousands" "of"
[... and 1,245 more]

3 :
[1] "hong" "kong" "has" "in" "effect" "banned"
[7] "an" "annual" "vigil" "for" "the" "tiananmen"
[... and 1,329 more] 18 / 65

Document-feature matrices
The typical input for most quantitative text analysis methods is called a DFM (Document-feature matrix), with
documents in rows and features in columns. Most often, we will use token (i.e., word) counts as features.

We can construct a DFM from our tokens object with dfm():

guardian_dfm <- guardian_tokens %>%
 dfm()

19 / 65

Document-feature matrices

guardian_dfm

Document-feature matrix of: 200 documents, 16,028 features (97.76% sparse) and 4 docvars.
features
docs given the coalition's unconscionable track record it is very hard
1 4 66 1 1 1 1 20 22 2 1
2 0 40 0 0 0 0 4 0 0 0
3 0 22 0 0 0 0 3 5 1 0
4 0 48 0 0 0 1 5 7 0 0
5 0 53 0 0 0 0 8 4 0 1
6 0 43 0 0 0 1 8 21 2 1
[reached max_ndoc ... 194 more documents, reached max_nfeat ... 16,018 more features]

In total, our sample contains 16,489 different words (thus: 16,489 features and the same number of
columns)
The DFM's sparsity is the proportion of cells with a value of zero.
Note that our docvars are still accessible via docvars(). As such, we could simply column-bind them to the
matrix to use (some of) these variables as additional features, which may be particularly useful for
(supervised) classification methods. However, in the following sessions, we will mainly work with word
features only.

20 / 65

Feature reduction
Even with as little as 200 articles, we have quite a large matrix with already several million cells. This can easily
grow to several hundred million cells even with medium-sized corpora. This can both increase the computational
load and make it harder to find meaningful, predictive features.

It is thus usually a good idea to reduce the dimensionality of the DFM by removing unnecessary features. The
three most common steps are:

Trimming by removing very uncommon and/or very common features because they usually have little to no
discriminative or predictive value
Stemming words to their word stem, so for example singular and plural forms of the same word are
represented in the same feature
Removing common functional words (stopwords) like conjunctions and articles because, again, they usually
hhave little to no discriminative or predictive value

21 / 65

Feature reduction: Trimming
Use dfm_trim() to trim features from a DFM. You can trim both by term frequency (how often does the feature
appear across all documents) and document frequency (in how many documents does the feature appear), and
both by absolute and relative values (among others).

For example, the following code removes all features that appear less than 5 times across all documents and all
features that appear in more than 75% of all documents:

guardian_dfm %>%
 dfm_trim(min_termfreq = 5, termfreq_type = "count",
 max_docfreq = 0.75, docfreq_type = "prop")

Document-feature matrix of: 200 documents, 3,490 features (93.12% sparse) and 4 docvars.
features
docs given track record very hard morrison government approach anything climate
1 4 1 1 2 1 4 8 1 1 11
2 0 0 0 0 0 0 0 0 0 0
3 0 0 0 1 0 0 0 0 0 0
4 0 0 1 0 0 0 0 0 0 0
5 0 0 0 0 1 0 0 0 0 0
6 0 0 1 2 1 0 0 0 0 0
[reached max_ndoc ... 194 more documents, reached max_nfeat ... 3,480 more features] 22 / 65

Feature reduction: Stemming
Use dfm_wordstem() to conduct word stemming. This uses the Snowball stemming algorithm, which is
currently available for 26 languages. Use the language argument to set the language (default: "english"), and
SnowballC::getStemLanguages() to get a list of available languages.

guardian_dfm %>%
 dfm_wordstem(language = "english")

Document-feature matrix of: 200 documents, 11,098 features (97.00% sparse) and 4 docvars.
features
docs given the coalit unconscion track record it is veri hard
1 4 66 9 1 1 1 23 22 2 1
2 0 40 0 0 0 0 5 0 0 0
3 0 22 0 0 0 0 4 5 1 0
4 0 48 0 0 0 1 8 7 0 0
5 0 53 0 0 0 0 11 4 0 1
6 0 43 0 0 0 1 12 21 2 1
[reached max_ndoc ... 194 more documents, reached max_nfeat ... 11,088 more features]

For example, note coalit, which has replaced coalition's (and all other forms of coalition) and now has
count of 9.

23 / 65

https://snowballstem.org/

Feature reduction: Stopword removal
Use dfm_remove() to remove any features given in a character vector from the DFM. Stopword removal is thus
pretty much a form of trimming by providing a list of features to remove.

quanteda (via the stopwords package) provides several lists of stopwords for various languages. For example,
the default list of english stopwords, also from the Snowball project, contains 175 stopwords:

stopwords("english")

[1] "i" "me" "my" "myself" "we"
[6] "our" "ours" "ourselves" "you" "your"
[11] "yours" "yourself" "yourselves" "he" "him"
[16] "his" "himself" "she" "her" "hers"
[21] "herself" "it" "its" "itself" "they"
[26] "them" "their" "theirs" "themselves" "what"
[31] "which" "who" "whom" "this" "that"
[36] "these" "those" "am" "is" "are"
[41] "was" "were" "be" "been" "being"
[46] "have" "has" "had" "having" "do"
[51] "does" "did" "doing" "would" "should"
[56] "could" "ought" "i'm" "you're" "he's"
[61] "she's" "it's" "we're" "they're" "i've"
[66] "you've" "we've" "they've" "i'd" "you'd" 24 / 65

Feature reduction: Stopword removal
For example, note that the is gone (and that the sparsity of the matrix actually increased) after stopword
removal:

guardian_dfm %>%
 dfm_remove(stopwords("english"))

Document-feature matrix of: 200 documents, 15,862 features (98.16% sparse) and 4 docvars.
features
docs given coalition's unconscionable track record hard assume morrison
1 4 1 1 1 1 1 1 4
2 0 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0 0
4 0 0 0 0 1 0 0 0
5 0 0 0 0 0 1 0 0
6 0 0 0 0 1 1 0 0
features
docs government approach
1 8 1
2 0 0
3 0 0
4 0 0
5 0 0 25 / 65

Feature reduction
Some general tips on feature reduction:

There is no single best way that applies to all projects.
It is often advisable to try out different feature reduction steps and check their effects on the model
outcome.
However, a good, robust text model should also be somewhat resistant to small changes in feature
reductions.
Order matters! For example, when using both stemming and trimming, stem first, then trim.
Stemming and stopword removal can also be applied to token objects before creating the DFM (with
tokens_wordstem() and tokens_remove(), respectively).

26 / 65

Basic text preprocessing
Exercise 1: Preprocessing

aoc_tweets.csv (on ILIAS) contains 783 tweets by Alexandria Ocasio-Cortez made in 2021, as obtained by
Twitter's Academic API.

Load the tweets into R and create a quanteda corpus object
Tokenize, convert to lowercase and remove punctuation, emojis, numbers, and URLs
Create a DFM, remove english stopwords, the retweet indicator "RT", #hashtags and @mentions (hint: look
at the ?dfm_remove() documentation).
Bonus points: Check the DFM and the most common features (topfeatures()) to identify further
problematic features (and propose solutions)

27 / 65

Advanced text preprocessing & annotation

28 / 65

Using spacyr
More sophisticated preprocessing requires pre-trained language models. The Python module spaCy provides
several pre-trained models for a variety of languages, capable of such tasks as lemmatization, part-of-speech
tagging, and named entity recognition.

We can make use of spaCy's preprocessing pipelines with the R package spacyr, but this still needs spaCy (and
the language models) to be installed:

pip install spacy
python -m spacy download en_core_web_sm

After installing both spaCy and spacyr, we can then initialize the language models as follows:

library(spacyr)
spacy_initialize(model = "en_core_web_sm")

29 / 65

Lemmatization
Lemmatization, stemming's fancy sibling, groups inflected word forms to their common dictionary form,
lemma. This means that, unlike with stemming, also irregular forms of words can be grouped together (i.e., "is"
and "are" are both lemmatized as "be"). However, lemmatization thus also needs to identify the word meaning
in a sentence, and as such requires full text (and not just a bag of words).

With a pre-trained model, the process itself is quite simple. We use spacyr's spacy_parse() function on a text
corpus and set lemma = TRUE:

guardian_lemma <- spacy_parse(guardian_corpus, lemma = TRUE,
 pos = FALSE, entity = FALSE)

30 / 65

Lemmatization

guardian_lemma

A tibble: 175,395 x 5
doc_id sentence_id token_id token lemma
<chr> <int> <int> <chr> <chr>
1 1 1 1 Given give
2 1 1 2 the the
3 1 1 3 Coalition Coalition
4 1 1 4 ’s ’s
5 1 1 5 unconscionable unconscionable
6 1 1 6 track track
7 1 1 7 record record
8 1 1 8 , ,
9 1 1 9 it it
10 1 1 10 is be
... with 175,385 more rows

For example, note that "is" in line 10 has been correctly lemmatized to "be".

31 / 65

Lemmatization
From here, we can continue with quanteda functions by converting the word list into a token object:

as.tokens(guardian_lemma, use_lemma = TRUE)

Tokens consisting of 200 documents.
1 :
[1] "give" "the" "Coalition" "’s"
[5] "unconscionable" "track" "record" ","
[9] "it" "be" "very" ","
[... and 1,379 more]

2 :
[1] "a" "fuel" "semi" "-"
[5] "truck" "drive" "into" "a"
[9] "George" "Floyd" "demonstration" "of"
[... and 462 more]

3 :
[1] "Hong" "Kong" "have" "in" "effect" "ban"
[7] "an" "annual" "vigil" "for" "the" "Tiananmen"
[... and 512 more]
32 / 65

Part-of-speech tagging
Part-of-speech tagging (POS tagging) identifies the corresponding part of speech for each word, for example:

NOUN: noun
VERB: verb
ADJ: adjective
PROPN: proper noun

etc.

POS tagging is more relevant for more linguistics-focused models, but may still be useful for statistical
approaches as well, for example for disambiguation purposes. We can again use spacy_parse(), this time
setting pos = TRUE:

guardian_pos <- spacy_parse(guardian_corpus, lemma = FALSE,
 pos = TRUE, entity = FALSE)

33 / 65

Part-of-speech tagging

guardian_pos

A tibble: 175,395 x 5
doc_id sentence_id token_id token pos
<chr> <int> <int> <chr> <chr>
1 1 1 1 Given VERB
2 1 1 2 the DET
3 1 1 3 Coalition PROPN
4 1 1 4 ’s PART
5 1 1 5 unconscionable ADJ
6 1 1 6 track NOUN
7 1 1 7 record NOUN
8 1 1 8 , PUNCT
9 1 1 9 it PRON
10 1 1 10 is AUX
... with 175,385 more rows

34 / 65

Named entity recognition
Finally, we can use spacyr to extract named entities in a corpus. Named entities may include:

ORG: organisations
PERSON: persons
NORP: nationalities, religious or political groups
GPE: geo-political entities, i.e., countries, cities, states
FAC: facilities like buildings, airports, etc.

and several more.

Again, we use spacy_parse(), this time setting entity = TRUE:

guardian_ner <- spacy_parse(guardian_corpus, lemma = FALSE,
 pos = FALSE, entity = TRUE)

35 / 65

Named entity recognition

guardian_ner %>%
 filter(entity != "")

A tibble: 22,377 x 5
doc_id sentence_id token_id token entity
<chr> <int> <int> <chr> <chr>
1 1 1 2 the ORG_B
2 1 1 3 Coalition ORG_I
3 1 1 4 ’s ORG_I
4 1 1 18 Morrison PERSON_B
5 1 3 9 Scott PERSON_B
6 1 3 10 Morrison PERSON_I
7 1 4 6 Weetbix ORG_B
8 1 4 15 Morrison PERSON_B
9 1 4 21 the DATE_B
10 1 4 22 coming DATE_I
... with 22,367 more rows

Note that _B identifies the beginning of an entity, _I an "inside" part of an entity.

36 / 65

Using spacyr
Running spaCy language models consumes lots of memory, so remember to shut down those background
processes after all annotation has been completed:

spacy_finalize()

37 / 65

Weighting
Going back to DFM's and quanteda, we may improve model performance by weighting the features in the DFM.
The general form to weight DFMs in quanteda is to use the function dfm_weight(). For example, to use the
feature proportion per document instead of absolute frequencies, set scheme = "prop":

guardian_dfm %>%
 dfm_weight(scheme = "prop")

Document-feature matrix of: 200 documents, 16,028 features (97.76% sparse) and 4 docvars.
features
docs given the coalition's unconscionable track
1 0.003294893 0.05436573 0.0008237232 0.0008237232 0.0008237232
2 0 0.09523810 0 0 0
3 0 0.04910714 0 0 0
4 0 0.05904059 0 0 0
5 0 0.09363958 0 0 0
6 0 0.04574468 0 0 0
features
docs record it is very hard
1 0.0008237232 0.016474465 0.018121911 0.001647446 0.0008237232
2 0 0.009523810 0 0 0
3 0 0.006696429 0.011160714 0.002232143 0
4 0.0012300123 0.006150062 0.008610086 0 0 38 / 65

Weighting
One common form of weighting is to use the term frequency - inverse document frequency (tf-idf) statistic.
The tf-idf value increases with the number of times a word appears in a document, and is offset with the number
of times the respective word appears in documents accross the whole corpus. As such, it seeks to reflect how
important/distinctive a word is for a specific document.

In quanteda, use dfm_tfidf() to apply the tf-idf weighting to a DFM object. For example, note that "the" has
a value of 0 even though it is the most frequent word in the first document:

guardian_dfm %>%
 dfm_tfidf()

Document-feature matrix of: 200 documents, 16,028 features (97.76% sparse) and 4 docvars.
features
docs given the coalition's unconscionable track record it
1 2.150408 0 2 2.30103 1.154902 0.8096683 0.7242435
2 0 0 0 0 0 0 0.1448487
3 0 0 0 0 0 0 0.1086365
4 0 0 0 0 0 0.8096683 0.1810609
5 0 0 0 0 0 0 0.2896974
6 0 0 0 0 0 0.8096683 0.2896974
features 39 / 65

Word embeddings
With DFMs, we follow the bag-of-words model, that is, we choose to ignore word order and all semantical and
syntactical relationships between words (and this actually works fine for most purposes). However, alternative
ways of representing text as numbers exist that seek to preserve such connections between lexical units.

With word embeddings (also word vectors), we encode words in high-dimensional numeric vectors so that words
that have little distance in vector space are more similar in meaning than words that have larger distances.

There are complex, pre-trained word embedding models ready to use, such as word2vec, but for demonstration
purposes, we will create our own word embeddings.

The following steps are based on chapter 5 of the great book "Supervised machine learning for text analysis in R"
by Emil Hvitfeldt and Julia Silge.

40 / 65

https://cran.r-project.org/web/packages/word2vec/
https://smltar.com/embeddings.html

Word embeddings
First, note that word embeddings are usually trained on a huge corpus of documents, which also makes them
very computationally expensive. For demonstration purposes, let's use a larger sample of the Guardian corpus,
containing 10,000 articles:

guardian_larger <- readRDS("temp/guardian_sample_2020.rds")
guardian_larger

A tibble: 10,000 x 6
id title body url date pillar
<int> <chr> <chr> <chr> <dttm> <chr>
1 1 We know this ~ There is a me~ https://www.t~ 2020-01-01 00:09:23 Opini~
2 2 Mariah Carey'~ Mariah Carey’~ https://www.t~ 2020-01-01 00:34:18 Arts
3 3 Australia wea~ Firefighters ~ https://www.t~ 2020-01-01 02:59:09 News
4 4 TV tonight: S~ Dracula 9pm, ~ https://www.t~ 2020-01-01 06:20:56 Arts
5 5 Shipping fuel~ Sulphur will ~ https://www.t~ 2020-01-01 07:00:58 News
6 6 Western Balka~ The European ~ https://www.t~ 2020-01-01 08:00:01 News
7 7 Welcome to th~ Australians f~ https://www.t~ 2020-01-01 08:50:00 News
8 8 The Power of ~ Without wishi~ https://www.t~ 2020-01-01 09:01:00 Arts
9 9 Top 10 books ~ The other nig~ https://www.t~ 2020-01-01 10:00:02 Arts
10 10 Three cities,~ There is more~ https://www.t~ 2020-01-01 10:57:37 Sport
... with 9,990 more rows 41 / 65

Word embeddings
These 10,000 articles consist of 7,824,081 words in total, and 117,188 unique words:

guardian_larger_tokens <- guardian_larger %>%
 unnest_tokens(word, body)

guardian_larger_tokens %>%
 count(word, sort = TRUE)

A tibble: 117,188 x 2
word n
<chr> <int>
1 the 454164
2 to 226355
3 of 205956
4 and 197623
5 a 188465
6 in 159147
7 that 86125
8 is 77972
9 for 75943
10 on 67063
... with 117,178 more rows 42 / 65

Word embeddings
First, we nest all documents into their own tibbles, as we want to compute word associations based on their co-
occurence within the same document. For example, the row of the first document now contains a nested tibble
containing all 698 words as single rows of said document:

guardian_nested <- guardian_larger_tokens %>%
 select(id, word) %>%
 nest(words = word)
guardian_nested

A tibble: 9,965 x 2
id words
<int> <list>
1 1 <tibble [698 x 1]>
2 2 <tibble [254 x 1]>
3 3 <tibble [462 x 1]>
4 4 <tibble [515 x 1]>
5 5 <tibble [933 x 1]>
6 6 <tibble [929 x 1]>
7 7 <tibble [437 x 1]>
8 8 <tibble [1,215 x 1]>
9 9 <tibble [1,204 x 1]>
10 10 <tibble [784 x 1]> 43 / 65

Word embeddings
One way to measure word associations is by looking at how often they appear together and how often they
appear alone in predefined windows (i.e., sequences of n words). The pointwise mutual information (PMI)
measures this association computing the logarithmn of the probability of finding two words together in a given
window, and dividing this by the probability of finding each word alone. The higher the PMI, the more likely
those two words appear together.

We need some additional packages to efficiently compute this measures for all two-word associations in a given
window in our corpus:

library(slider) # Creating sliding windows
library(widyr) # Wide-matrix processing
library(furrr) # Parallel computing

Loading required package: future

44 / 65

Word embeddings
The aforementioned book provides a function to create word windows of a given size:

slide_windows <- function(tbl, window_size) {
 skipgrams <- slider::slide(
 tbl,
 ~.x,
 .after = window_size - 1,
 .step = 1,
 .complete = TRUE
)

 safe_mutate <- safely(mutate)

 out <- map2(skipgrams,
 1:length(skipgrams),
 ~ safe_mutate(.x, window_id = .y))

 out %>%
 transpose() %>%
 pluck("result") %>%
 compact() %>%
 bind_rows()
} 45 / 65

https://smltar.com/embeddings.html#understand-word-embeddings-by-finding-them-yourself

Word embeddings
Let's create word windows of size 8. This is the computationally expensive part of the procedure and can easily
run for several hours, depending on the size of the corpus, even on fairly powerful hardware.

Note that the window size is crucial here: a small window captures only close associations and thus focuses on
functionally similar words, whereas larger windows capture more thematic information. However, the larger the
window, the higher the computational load.

plan(multisession) ## for parallel processing

guardian_windows <- guardian_nested %>%
 mutate(words = future_map(words, slide_windows, 8L))

46 / 65

Word embeddings
The result now contains all windows of 8 sequential words for each document. For example, the first document
contains 698 words, and now 5,528 windows of 8 words:

guardian_windows

A tibble: 9,965 x 2
id words
<int> <list>
1 1 <tibble [5,528 x 2]>
2 2 <tibble [1,976 x 2]>
3 3 <tibble [3,640 x 2]>
4 4 <tibble [4,064 x 2]>
5 5 <tibble [7,408 x 2]>
6 6 <tibble [7,376 x 2]>
7 7 <tibble [3,440 x 2]>
8 8 <tibble [9,664 x 2]>
9 9 <tibble [9,576 x 2]>
10 10 <tibble [6,216 x 2]>
... with 9,955 more rows

47 / 65

Word embeddings
Some more data transformations - we unnest our nested tibbles and unite the document and window id
variables into one variable:

guardian_windows_united <- guardian_windows %>%
 unnest(words) %>%
 unite(window_id, id, window_id)

48 / 65

Word embeddings
Window 1_1 identifies the first 8 word window of the first document, window 1_2 the second 8 word window of
the second document (note that this second window begins with the second word of the first window), etc.:

guardian_windows_united

A tibble: 62,034,608 x 2
window_id word
<chr> <chr>
1 1_1 there
2 1_1 is
3 1_1 a
4 1_1 message
5 1_1 woven
6 1_1 into
7 1_1 everything
8 1_1 the
9 1_2 is
10 1_2 a
... with 62,034,598 more rows

49 / 65

Word embeddings
We can now compute the PMI for each two-word association in a given window using pairwise_pmi():

guardian_pmi <- guardian_windows_united %>%
 pairwise_pmi(item = word, feature = window_id)

50 / 65

Word embeddings
For each word, we now have the PMI of said word appearing with every other word in a 8-word window across
the whole corpus. This results in 23,670,248 values for 117,188 unique words:

guardian_pmi

A tibble: 23,670,248 x 3
item1 item2 pmi
<chr> <chr> <dbl>
1 is there 1.17
2 a there 0.115
3 message there -0.322
4 woven there -1.25
5 into there -0.849
6 everything there -0.125
7 the there -0.588
8 prime there -1.43
9 minister there -1.01
10 says there 0.284
... with 23,670,238 more rows

51 / 65

Word embeddings
Now for the actual word embeddings. To reduce the dimensionality of our word matrix (currently 23,670,248
cells), we apply a matrix factorization algorithmn called singular value decomposition (SVD) that factors our large
initial matrix into a set of smaller matrices, the amount of which corresponds to the dimensionality of the vector
space. This reduces the size of our initial word matrix to n_unique_words * n_dimensions:

guardian_word_vectors <- guardian_pmi %>%
 widely_svd(
 item1, item2, pmi,
 nv = 100, maxit = 1000
)

guardian_word_vectors <- readRDS("temp/guardian_word_vectors.rds")

52 / 65

Word embeddings
The resulting tibble now contains 100 values per word, giving the vector position of each word in each of the 100
dimensions. This way, we have reduced the size of our initial word matrix from 23,670,248 to 11,718,800
(117,188 unique words * 100 dimenions):

guardian_word_vectors

A tibble: 11,718,800 x 3
item1 dimension value
<chr> <int> <dbl>
1 meyomesse 1 0.000176
2 enoh 1 0.000183
3 andrewwhitey 1 0.0000581
4 www.andrewwhite.nyc 1 0.0000425
5 15,040 1 0.000277
6 att 1 0.000285
7 chetnamakan 1 0.0000833
8 leonrestaurants 1 0.0000878
9 depaola 1 -0.0000819
10 tomie 1 -0.000113
... with 11,718,790 more rows

53 / 65

Word embeddings
Where to go from here? For example, we can compute the cosine similarity between words to see how
close/distant they are from each other (and thus, how closely they are related in our corpus) in the vector space.
Luckily, the book also provides a helpful function for this:

nearest_neighbors <- function(df, token) {
 df %>%
 widely(
 ~ {
 y <- .[rep(token, nrow(.)),]
 res <- rowSums(. * y) /
 (sqrt(rowSums(. ^ 2)) * sqrt(sum(.[token,] ^ 2)))

 matrix(res, ncol = 1, dimnames = list(x = names(res)))
 },
 sort = TRUE,
 sparse = TRUE
)(item1, dimension, value) %>%
 select(-item2)
}

54 / 65

https://smltar.com/embeddings.html#exploring-cfpb-word-embeddings

Word embeddings
Let's take a look at Joe Biden:

nearest_neighbors(guardian_word_vectors, "biden")

A tibble: 117,188 x 2
item1 value
<chr> <dbl>
1 biden 1
2 biden’s 0.905
3 presidential 0.882
4 sanders 0.871
5 democrats 0.831
6 republicans 0.825
7 buttigieg 0.791
8 joe 0.789
9 democratic 0.786
10 bernie 0.785
... with 117,178 more rows

55 / 65

Word embeddings
Or at Jürgen Klopp:

nearest_neighbors(guardian_word_vectors, "klopp")

A tibble: 117,188 x 2
item1 value
<chr> <dbl>
1 klopp 1
2 jürgen 0.917
3 mourinho 0.805
4 arteta 0.777
5 pep 0.767
6 lampard 0.764
7 liverpool’s 0.759
8 solskjær 0.755
9 gunnar 0.750
10 ole 0.732
... with 117,178 more rows

56 / 65

Word embeddings
Who is closer to Washington?

nearest_neighbors(guardian_word_vectors, "biden") %>%
 filter(item1 == "washington")

A tibble: 1 x 2
item1 value
<chr> <dbl>
1 washington 0.413

nearest_neighbors(guardian_word_vectors, "klopp") %>%
 filter(item1 == "washington")

A tibble: 1 x 2
item1 value
<chr> <dbl>
1 washington 0.0276

57 / 65

Exercise solutions

58 / 65

Exercise solutions
Exercise 1: Preprocessing

We can use read_csv() (or the base R equivalent read.csv) to read in the CSV file:

aoc_tweets <- read_csv("data/aoc_tweets.csv",
 col_types = c(id = col_character()))

Note that when using Twitter data (and other social media data), it is advisable to explicitly read numeric IDs as
character, as longer numeric IDs may be too long for double precision.

59 / 65

Exercise solutions
We can use the Tweet id for the document id; the tweet text is stored in the text column:

aoc_corpus <- corpus(aoc_tweets, docid_field = "id", text_field = "text")
aoc_corpus

Corpus consisting of 783 documents and 5 docvars.
1399487557151477764 :
"RT @BernieSanders: Congratulations to Democrats in Texas for..."

1399487339043426309 :
"Proud of you, @naomiosaka. https://t.co/ReCg1K33oA"

1398666730352922625 :
"RT @nhannahjones: The only Tulsa commemoration I’m intereste..."

1398338093002932231 :
"RT @RepJayapal: Mitch McConnell has already said that 100% o..."

1398319996179202050 :
"RT @ninaturner: Big banks know that fossil fuels are causing..."

1398319597019971587 : 60 / 65

Exercise solutions
Hashtags and mentions are preserved by default. Emojis are symbols and are thus removed with
remove_symbols = TRUE:

aoc_tokens <- aoc_corpus %>%
 tokens(remove_punct = TRUE,
 remove_symbols = TRUE,
 remove_numbers = TRUE,
 remove_url = TRUE) %>%
 tokens_tolower()

61 / 65

Exercise solutions
Remember that we lowercased all features, thus the retweet indicator "RT" can be removed with "rt":

aoc_dfm <- aoc_tokens %>%
 dfm() %>%
 dfm_remove(c("rt", stopwords("english"))) %>%
 dfm_remove(pattern = "@*") %>%
 dfm_remove(pattern = "#*")
aoc_dfm

Document-feature matrix of: 783 documents, 4,173 features (99.65% sparse) and 5 docvars.
features
docs congratulations democrats texas protecting democracy
1399487557151477764 1 2 1 1 1
1399487339043426309 0 0 0 0 0
1398666730352922625 0 0 0 0 0
1398338093002932231 0 0 0 0 0
1398319996179202050 0 0 0 0 0
1398319597019971587 0 0 0 0 0
features
docs right vote see u.s proud
1399487557151477764 1 1 1 1 0
1399487339043426309 0 0 0 0 1 62 / 65

Exercise solutions
In the DFM, we can already see "u.s", which is the result from tokenizing "U.S.". We may want to change this
sequence of characters ("U.S.") to "US" beforehand, for example with stringr::str_replace_all():

aoc_tweets %>%
 mutate(text = str_replace_all(text, "U\\.S\\.", "US"))

However, this would also create some ambiguity with "us".

63 / 65

Exercise solutions
Let's look at the top features for further problems:

topfeatures(aoc_dfm)

amp people can just w congress capitol now
161 97 89 68 61 58 54 50
us new
50 50

"amp" is the remains of the HTML entity for the ampersand sign, &. This (changing some special
characters to their HTML entity) is one annoying quirk of the Twitter API. We may just remove this "by hand"
(dfm_remove("amp")). More generally, the most reliable option to deal with HTML entities is to decode
them in the text beforehand textutils::HTMLdecode().
"w" is the remains of "w/" (abbreviation for "with"). We may want to remove this by hand, or, more
conveniently, use dfm_select(min_nchar = 2) to remove all one-letter words from our DFM.

64 / 65

Thanks
Credits:

Slides created with xaringan
Title image by Susan Holt Simpson / Unsplash
Coding cat gif by Memecandy/Giphy

65 / 65

https://github.com/yihui/xaringan
https://unsplash.com/photos/Rd01U0tPmQI
https://giphy.com/gifs/memecandy-LmNwrBhejkK9EFP504

