
Studying News Use with
Computational Methods
Data Collection in R, Part I: Collecting Social Media
Data

Julian Unkel
University of Konstanz
2021/05/10

1 / 45

As we have seen in the previous sessions, social
media play a key role for users' news consumption.

By their design, they record human behavior (and
thus news use behavior) as digital traces of users
engaging and interacting (clicking on news links,
liking news posts, writing comments on said posts)
with social media posts.

In this session, we will deal with common
approaches to collect digital trace data from social
media.

Our agenda today:

API requests
Basics
Calling APIs with R

API wrapper packages
Basics
Example: Querying the Twitter API with
rtweet
Twitter's Academic API track

Facepager
Social monitoring services

CrowdTangle
Other commercial options

Grey area tools

Agenda

2 / 45

API requests

3 / 45

Think of accessing data on web servers (e.g., by
opening a web site in a browser) via HTTP (Hypertext
Transfer Protocol) as ordering a package via mail:

First, we place an order with our client, for
example by typing an URL into a browser
(Request)
The server sends our client a package
(Response), consisting of two parts:

Header: Sort of like the packing slip; contains
lots of meta information, for example
whether our package was delivered
successfully
Body: The actual content of the package, for
example an HTML �le

HTTP requests in the client-server model

Basics: HTTP requests

4 / 45

Basics: HTTP methods & status codes
There are several di�erent request methods, most importantly:

GET: Request data retrieval
POST: Request sending (=posting) data (e.g., web forms)

Response headers contain three-digit status codes that tell us if everything went okay or what went wrong. Most
importantly:

2xx: Success! We usually want code 200, telling us that everything is OK
4xx: Oh no, client error! This means: The problem is caused by the client (i.e., us). You have probably already
encountered these:

403: Forbidden - client is not allowed to access the requested resource
404: Not found - client requested a resource that is not available on the server

5xx: Oh no, server error! For example, 503 (service unavailable) tells us that the server is (currently) to busy
to handle our request.

5 / 45

Basics: Writing HTTP requests in R
We can write our own HTTP requests in R using the httr package. Let's install it if we haven't done so already:

install.packages("httr")

After loading the package, we can use functions named after the request methods to send HTTP requests. Let's
request your SEDS home page.

library(httr)
seds_resp <- GET("https://www.wiwi.uni-konstanz.de/studium/master-of-science/seds/")

The response is a list object containing the 'whole package'. Let's �rst take a look at the status code:

status_code(seds_resp)

[1] 200

Everything went OK!

6 / 45

https://www.wiwi.uni-konstanz.de/studium/master-of-science/seds/

Basics: Writing HTTP requests in R
We can now investigate the body - the actual content - of our response object:

content(seds_resp)

{html_document}
<html lang="de">
[1] <head>\n<meta http-equiv="Content-Type" content="text/html; charset=UTF-8 ...
[2] <body class="faculty">\n\n <nav class="anchormenu" aria-label="Sprungm ...
[3] <script src="https://www.wiwi.uni-konstanz.de/typo3temp/assets/compressed ...
[4] <script src="https://www.wiwi.uni-konstanz.de/typo3temp/assets/compressed ...
[5] <script type="text/javascript">\n/*<![CDATA[*/\n/*TS_inlineFooter*/\n\t\t ...
[6] <script type="text/javascript">\r\n var _paq = _paq || [];\r\n /* track ...
[7] <script type="text/x-mathjax-config">\r\n MathJax.Hub.Config({\r\n ...
[8] <script type="text/javascript" src="/MathJax/MathJax.js?config=TeX-AMS_HT ...

The �rst lines tell us that we have successfully requested an html_document. We will deal with working with
HTML documents in the next session. But you can already see the �rst level of contents of the HTML �le, namely
a <head> with meta information, the <body> containing all the text of the website (not to be confused with the
header and the body of the response), and various <script>s.

7 / 45

Basics: What's in a URL?
We access resources on the web by providing the corresponding URL (Uniform Resource Locator). Let's take a
closer look:

https://www.google.de/search?q=seds

Scheme: The scheme speci�es the protocol that we are using (HTTPS is a secure version of HTTP)
Domain: The domain name indicates the web server that is being requested
Path: The path points to the speci�c resource on the web server, just like the folder structure on your
computer. It can include the �le name (e.g., /path/to/page.html), but on web pages, this is usually
handled on the server side.
Parameters: Web servers may accept parameters in a key=value combination to dynamically provide
content for a speci�c resource. They are separated from the path by a single ?. Multiple parameters can be
linked by & (e.g., ?key1=value1&key2=value2).

In the above example, we are thus requesting the resource at path /search with the parameter q set to seds of
the domain www.google.de via the HTTPS protocol: https://www.google.de/search?q=seds

We can add other parameters to change the output: https://www.google.de/search?q=seds&start=10

8 / 45

https://www.google.de/search?q=seds
https://www.google.de/search?q=seds&start=10

Basics: JSON
Web-APIs usually do not return HTML �les, but more structured data, most often in the JSON (JavaScript Object
Notation, pronounced as in "Jason and The Argonauts") format. This open, human-readable and �exible text
format is able to represent various (also hierarchical and nested) data structures in attribute-value pairs. We will
deal with JSON �les soon, but the example from Wikipedia probably already tells you all the basics you need to
know:

{
 "firstName": "John",
 "lastName": "Smith",
 "isAlive": true,
 "age": 27,
 "address": {
 "streetAddress": "21 2nd Street",
 "city": "New York",
 "state": "NY",
 "postalCode": "10021-3100"
 },
 "phoneNumbers": [
 {
 "type": "home",
 "number": "212 555-1234"
 },

9 / 45

https://www.ecma-international.org/wp-content/uploads/ECMA-404_2nd_edition_december_2017.pdf
https://en.wikipedia.org/wiki/JSON

APIs
APIs (application programming interfaces) are interfaces of software applications to communicate (e.g., share
data) with other applications.

In our context, the term usually references Web APIs, interfaces of web applications/servers using request-
response systems.

All Web APIs are di�erent and thus require some engagement with the (hopefully helpful) documentation:

access requirements
endpoints and parameters
response data structures

But all Web APIs are the same:

we write an HTTP request to the API URL
the API responds by providing the requested data (usually in JSON, XML, or CSV)

10 / 45

APIs: Authentication & Rate limits
Access to APIs is regulated in many di�erent ways, for example:

Open (can be called without any authentication)
Username/password
API key (often passed as a URL parameter)
OAuth (a protocol for generating user- or session-speci�c authentication tokens)

In all but the �rst case, this requires (often reviewed or even paid) registration.

APIs usually manage access by setting rate limits, de�ning how many calls a user can make within a given time
period. Exceeding the rate limit may result in:

Request errors (e.g., 429 Too Many Requests)
Request throttling
Fees (in commercial APIs)

11 / 45

APIs: Endpoints & Parameters
Most APIs o�er several endpoints for speci�c actions. Endpoints are thus a combination of an URL path and an
HTTP request method.

For example, some endpoints of the Twitter API v2, using the base URL https://api.twitter.com are:

GET /2/tweets: Get information about tweets
GET /2/users/:id/tweets: Get tweets of the Twitter user with the id :id
POST /2/users/:id/likes: Like a tweet on behalf of the Twitter user with the id :id

Calls to endpoints are then usually speci�ed further by providing parameters, either as URL parameters or, for
example when using the POST method, in the request body.

For GET /2/tweets, we would add a list of tweet IDs to our call by adding the parameter ids (e.g, GET
https://api.twitter.com/2/tweets?ids=id1,id2,id3)
For POST /2/users/:id/likes, we would add the id of the target tweet in the request body in JSON
format (e.g., {"tweet_id": "id1"})

12 / 45

APIs: Social Media
Programmable Web provides an overview of about 25,000 APIs you may want to use.

Common social media APIs are:

Twitter API (https://developer.twitter.com/en/docs/twitter-api)
Access to Twitter tweets, timelines, pro�les, etc.
Will I get access? Likely, through the Academic Research track

Facebook Graph API (https://developers.facebook.com/docs/graph-api)
Acces to Facebook posts, comments, pro�les, etc.
Will I get access? Unlikely (but wait for the rest of the session)

Facebook Ad Library API (https://www.facebook.com/ads/library/api)
Access to political Facebook ads (content, reach, spendings, etc.)
Will I get access? Very likely

Instagram Graph API (https://developers.facebook.com/docs/instagram-api)
Access to Instagram posts, pro�les, etc.
Will I get access? Unlikely (but wait for the rest of the session)

Reddit API (https://www.reddit.com/dev/api/)
Reddit submissions, comments, etc.
Will I get access? Actually haven't tried it (because see next slide)

13 / 45

https://www.programmableweb.com/
https://developer.twitter.com/en/docs/twitter-api
https://developer.twitter.com/en/solutions/academic-research
https://developers.facebook.com/docs/graph-api
https://www.facebook.com/ads/library/api
https://developers.facebook.com/docs/instagram-api
https://www.reddit.com/dev/api/

The Pushshift API
Pushshift is a privately maintained, open Reddit dataset, ingesting Reddit content in real time. For technical
details, see the paper The Pushshift Reddit Dataset.

The dataset is accessible, among other pathways, via a public, open API: https://api.pushshift.io, documented at
https://github.com/pushshift/api.

Main advantages over the 'real' Reddit API:

No authentication required
Larger response object limits
Very forgiving rate limits

Drawbacks:

Unclear state of development, incomplete documentation
Some issues with deleted posts
Likely coverage issues

14 / 45

https://arxiv.org/pdf/2001.08435.pdf
https://api.pushshift.io/
https://github.com/pushshift/api

Calling the Pushshift API with R
Let's write our �rst API call! The base URL of the Pushshift API is https://api.pushshift.io, so we might want to
store this for easier retrieval:

ps_base <- "https://api.pushshift.io"

As seen in the documentation, the API currently o�ers two endpoints, both for GET methods:

/reddit/search/comment: Searching individual comments
/reddit/search/submission: Searching submissions

Let's store them as well:

ps_comment <- "/reddit/search/comment"
ps_submission <- "/reddit/search/submission"

15 / 45

https://api.pushshift.io/
https://github.com/pushshift/api

Calling the Pushshift API with R
The GET() function of httr o�ers several arguments to construct a request from the di�erent parts of the call
URL. We can use the url argument to add the base URL (domain), de�ne the path using the path arguments,
and add several parameters by passing a named list of key/value pairs to the argument query.

In the following, we call the submission endpoint of the API, searching for the latest 100 submissions in the
r/news subreddit that contain the word "biden" in the submission title:

ps_resp <- GET(url = ps_base,
 path = ps_submission,
 query = list(subreddit = "news",
 title = "biden",
 size = 100)
)

16 / 45

https://www.reddit.com/r/news

Calling the Pushshift API with R
Let's take a look:

ps_resp

Response [https://api.pushshift.io/reddit/search/submission?subreddit=news&title=biden&size=100]
Date: 2021-04-29 15:27
Status: 200
Content-Type: application/json; charset=UTF-8
Size: 478 kB
{
"data": [
{
"all_awardings": [],
"allow_live_comments": false,
"author": "paulfromatlanta",
"author_flair_css_class": null,
"author_flair_richtext": [],
"author_flair_text": null,
"author_flair_type": "text",
...

17 / 45

Calling the Pushshift API with R
We can 'unpack' the response body by using the content() function:

ps_content <- content(ps_resp, type = "application/json")
str(ps_content, max.level = 1)

List of 1
$ data:List of 100

Further moving through the list levels, we can access information about the individual entries:

ps_data <- ps_content$data
ps_data[[1]]$title

[1] "Biden administration bans menthol cigarettes"

(Your results may vary as I'm using a cached response in this presentation.)

18 / 45

Calling the Pushshift API with R
Using some Tidyverse functions - speci�cally, from the purrr package for functional programming - we can
quickly transform the response to a rectangular dataframe:

library(tidyverse)
fields <- c("id", "title", "created_utc", "permalink", "url")
ps_data %>%
 map_dfr(magrittr::extract, fields)

A tibble: 100 x 5
id title created_utc permalink url
<chr> <chr> <int> <chr> <chr>
1 n16pfm Biden administrat~ 1619709687 /r/news/comments/n16~ https://www.cbsn~
2 n15u35 Biden Tax Plan Le~ 1619707290 /r/news/comments/n15~ https://www.wsj.~
3 n14vxm Biden Seeks Shift~ 1619704570 /r/news/comments/n14~ https://www.nyti~
4 n14tp9 President Biden p~ 1619704385 /r/news/comments/n14~ https://abcnews.~
5 n148h3 Indian-Americans ~ 1619702541 /r/news/comments/n14~ http://news.meim~
6 n13nyb Women Make Histor~ 1619700751 /r/news/comments/n13~ https://www.scra~
7 n12jtq &#x27;White S~ 1619696752 /r/news/comments/n12~ https://www.news~
8 n11j6p At 100 Days, Bide~ 1619692414 /r/news/comments/n11~ https://newsnati~
9 n112x0 Ex-Trump aide Ste~ 1619690395 /r/news/comments/n11~ https://apple.ne~
10 n10wv1 Joe Biden Unveils~ 1619689554 /r/news/comments/n10~ https://www.rayz~
... with 90 more rows 19 / 45

https://www.tidyverse.org/

Calling the Pushshift API with R
Exercise 1: Write your own call: Try to obtain the �rst 50 posts that were posted in German-language subreddit
r/de. Consult the documentation for help on the necessary parameters: https://github.com/pushshift/api

20 / 45

https://www.reddit.com/r/de
https://github.com/pushshift/api

APIs: Iteration & Pagination
If an API call matches more results than can be returned with a single response, we need an iteration
mechanism to retrieve all results. For example, if the call matches 500 results and the response object limit is
100, we need to make (at least) 5 calls to retrieve all results. Keep rate limits in mind when iterating over results!

Most APIs provide one or more of the following forms of pagination:

Pages: Results are spread over pages (e.g., results 1 to 100 on page 1, 101 to 200 on page 2). We can then
iterate over results by simply adding 1 to the page number (e.g., by adding the query parameter
page=page_num) in each successive call.
Keys: Results are ordered by ascending/descending keys (e.g., Tweet IDs). We can then iterate over results
by retrieving the minimum/maximum key of each call and requesting results below/above said key in the
next call.
Timestamps: Results are ordered by UNIX timestamps or DIN ISO 8601 date formats. We can then iterate
over results by retrieving the minimum/maximum timestamp of each call and requesting results
before/after said timestamp in the next call (but beware that multiple results can have the same timestamp).
Cursors: Results are spread over pages, but single pages are identi�ed by an opaque cursor (i.e., usually a
seemingly random sequence of characters) instead of integer numbers. We can then iterate over results by
retrieving the cursor for the next/previous page which should be provided in the response.

21 / 45

https://en.wikipedia.org/wiki/ISO_8601

Calling the Pushshift API with R
Exercise 2: Pagination: Try to obtain the latest 200 comments posted in the r/politics subreddit that contain the
phrase "lol". Consult the documentation for help on the necessary parameters: https://github.com/pushshift/api

22 / 45

https://www.reddit.com/r/politics
https://github.com/pushshift/api

API wrapper packages

23 / 45

API wrapper packages
API wrappers are language-speci�c packages that simplify calling speci�c APIs. In addition to providing
convenience functions for the actual calls, they sometimes also include pagination and rate limit handling.

You will probably �nd R wrapper packages for most common APIs. If in doubt, just google "r + API name".

If there is none, why not do some good and create your own wrapper package? Some resources:

CRAN: Best practices for API packages
Colin Fay: How to build an API wrapper package in 10 minutes

24 / 45

https://cran.r-project.org/web/packages/httr/vignettes/api-packages.html
https://colinfay.me/build-api-wrapper-package-r/

Example: rtweet
rtweet is probably the most common Twitter API wrapper package for R (and also somewhat o�cial, as it is co-
developed by the RStudio team).

Results follow tidy data conventions and are thus easily processed further; furthemore, the package can be used
without access to Twitter's developer API (but you will still need a Twitter account, and a developer account is
highly encouraged for large-scale data collection).

Currently, the package is not (yet) optimized for Twitter's API v2 (and thus the academic research track).

install.packages("rtweet")

25 / 45

https://github.com/ropensci/rtweet

Example: rtweet
Let's download the latest 1000 tweets containing #impfung.

library(rtweet)
vac_tweets <- search_tweets("#impfung", n = 1000, include_rts = FALSE)
vac_tweets

A tibble: 1,000 x 90
user_id status_id created_at screen_name text source
<chr> <chr> <dttm> <chr> <chr> <chr>
1 13518414~ 1390228032~ 2021-05-06 08:52:46 Rudi_4711 "@SZ #Impfung~ Twitte~
2 73765817 1390227820~ 2021-05-06 08:51:56 KarlheinzIl~ "Wollte mich ~ Twitte~
3 12362187~ 1390227682~ 2021-05-06 08:51:23 domiwi194 "Super Immuns~ Twitte~
4 16859954~ 1390227377~ 2021-05-06 08:50:10 black_purpl~ "Als generati~ Twitte~
5 16859954~ 1390020034~ 2021-05-05 19:06:16 black_purpl~ "\"Allerdings~ Twitte~
6 13570926~ 1390227085~ 2021-05-06 08:49:00 lujustsays "Und im übrig~ Twitte~
7 13570926~ 1389951298~ 2021-05-05 14:33:08 lujustsays "Vielleicht h~ Twitte~
8 19710089 1390226501~ 2021-05-06 08:46:41 mattimerker "\U0001f44d<U+2935><U+FE0F> ~ Twitte~
9 19710089 1389998448~ 2021-05-05 17:40:29 mattimerker "Das Impftemp~ Twitte~
10 19710089 1390019166~ 2021-05-05 19:02:49 mattimerker "Impfquote (2~ Twitte~
... with 990 more rows, and 84 more variables: display_text_width <dbl>,
reply_to_status_id <chr>, reply_to_user_id <chr>,
reply_to_screen_name <chr>, is_quote <lgl>, is_retweet <lgl>, 26 / 45

Example: rtweet
Exercise 3: rtweet: Try to obtain both the latest 500 tweets posted by Annalena Baerbock, Armin Laschet & Olaf
Scholz, and the 500 latest tweets favorited by them. Consult the documentation for help on the necessary
functions: https://github.com/ropensci/rtweet

27 / 45

https://github.com/ropensci/rtweet

Wrappers for Twitter's Academic API
Twitter's new API v2 o�ers an Academic Research track free for non-commercial academic research, including
master's students. It includes access to the full Twitter archive ('historic data') and o�ers high rate and tweet
limits (up to 10,000,000 tweets per month).

As the academic track is still new, there is not one de�nitive wrapper package (and most are still in active
development). Choose your �ghter:

academictwitteR
RTwitterV2
twitterAcademic
twitteRacademic (note the di�erent capital letter)

28 / 45

https://developer.twitter.com/en/solutions/academic-research
https://github.com/cjbarrie/academictwitteR
https://github.com/MaelKubli/RTwitterV2
https://github.com/kasperwelbers/twitterAcademic
https://github.com/mittendo/twitteRacademic

Facepager

29 / 45

Main advantages:

Free and open source
Easy to use
Good documentation and tutorial videos
Several presets for common use cases
App-level access to Facebook Graph API

Drawbacks:

some outdated information on the Wiki
Potential bottleneck of app-level rate limits

Facepager
Facepager is a tool for automated data collection (APIs, webscraping) of publicly available data.

30 / 45

https://github.com/strohne/Facepager/wiki
https://www.youtube.com/channel/UCiIbKv5b5rz-6LPTLQgVGug
https://github.com/strohne/Facepager

Getting started - fetching posts and comments:

1. Download and install Facepager
2. Create new local database
3. Login to Facebook via Facepager
4. Add Facebook pages as nodes (id or name)
5. Fetch posts for these pages using preset "2 Get

Facebook posts"
6. Switch node level to 2 and fetch comments

using preset "3 Get comments".
7. Data can be exported as a CSV �le for further

analysis.

Fetching Facebook data with Facepager
Apart from providing a point-and-click solution to API calls, the main advantage is the app-level access to
Facebook's Graph API. Thus, it is possible to obtain data from public Facebook pages (including comments!)
without an own Developer API authorization (however, you still need a Facebook account).

There are also presets for the most common tasks (fetching page data, fetching posts from pages, fetching
comments from posts).

31 / 45

https://github.com/strohne/Facepager/releases

Fetching Facebook data with Facepager

32 / 45

Social monitoring services

33 / 45

Advantages:

Easy to use, dashboards
App-level API access
Monitor multiple social media at once

Drawbacks:

Commercial and often costly
Not primarily made for research
Intransparent (coverage?)

Social monitoring services
Social monitoring services are (commercial) services for, ahem, monitoring social media, for example:

Crowdtangle
Synthesio
BuzzSumo

34 / 45

https://www.crowdtangle.com/
https://www.synthesio.com/
https://buzzsumo.com/

Access to both public Facebook & Instagram
data (but no comments)
Free academic track (but currently only PhD
students+ and subject to application)
Own API for programmatic access
Time-series data on posts
Some preprocessing included (e.g., image text
recognition for Instagram posts)
Lisa or Julian can provide data ;)

CrowdTangle
Crowdtangle is a social monitoring service owned by Facebook.

35 / 45

https://help.crowdtangle.com/en/articles/4302208-crowdtangle-for-academics-and-researchers
https://help.crowdtangle.com/en/articles/1189612-crowdtangle-api
https://www.crowdtangle.com/

Example Facebook dashboard: Example Instagram dashboard

CrowdTangle

36 / 45

CrowdTangle
Sample data:

A tibble: 271 x 40
`Page Name` `User Name` `Facebook Id` `Page Category` `Page Admin Top ~
<chr> <chr> <dbl> <chr> <chr>
1 ZEIT ONLINE zeitonline 37816894428 NEWS_SITE DE
2 WELT Nachric~ weltnachrich~ 95242447553 BROADCASTING_MED~ DE
3 ZEIT ONLINE zeitonline 37816894428 NEWS_SITE DE
4 t-online tonline 24897707939 MEDIA_NEWS_COMPA~ DE
5 ZEIT ONLINE zeitonline 37816894428 NEWS_SITE DE
6 WELT welt 97515118114 NEWS_SITE DE
7 ntv Nachrich~ ntvNachricht~ 126049165307 TV_CHANNEL DE
8 DER SPIEGEL derspiegel 38246844868 NEWS_SITE DE
9 FOCUS Online focus.de 37124189409 NEWS_SITE DE
10 Bild bild 25604775729 NEWS_SITE DE
... with 261 more rows, and 35 more variables: Page Description <chr>,
Page Created <chr>, Likes at Posting <dbl>, Followers at Posting <dbl>,
Post Created <chr>, Post Created Date <date>, Post Created Time <time>,
Type <chr>, Total Interactions <dbl>, Likes <dbl>, Comments <dbl>,
Shares <dbl>, Love <dbl>, Wow <dbl>, Haha <dbl>, Sad <dbl>, Angry <dbl>,
Care <dbl>, Video Share Status <chr>, Is Video Owner? <chr>,
Post Views <dbl>, Total Views <dbl>, Total Views For All Crossposts <dbl>, 37 / 45

CrowdTangle
Sample post time-series data:

A tibble: 36 x 35
ID `Score Date (GMT)` Timestep Likes `Average Likes` Comments
<dbl> <dttm> <dbl> <dbl> <dbl> <dbl>
1 1.02e16 2021-05-05 14:58:33 1 20 7 115
2 1.02e16 2021-05-05 15:15:54 2 36 7 200
3 1.02e16 2021-05-05 15:32:51 3 48 9 274
4 1.02e16 2021-05-05 15:50:52 4 59 9 346
5 1.02e16 2021-05-05 16:08:39 5 67 9 405
6 1.02e16 2021-05-05 16:25:32 6 79 11 486
7 1.02e16 2021-05-05 17:02:41 7 93 13 611
8 1.02e16 2021-05-05 17:40:12 8 110 14 726
9 1.02e16 2021-05-05 17:57:41 9 117 14 758
10 1.02e16 2021-05-05 18:34:05 10 131 15 839
... with 26 more rows, and 29 more variables: Average Comments <dbl>,
Shares <dbl>, Avg Shares <dbl>, Loves <dbl>, Avg Loves <dbl>, Wows <dbl>,
Avg Wows <dbl>, Hahas <dbl>, Avg Hahas <dbl>, Sads <dbl>, Avg Sads <dbl>,
Angrys <dbl>, Avg Angrys <dbl>, Cares <dbl>, Avg Cares <dbl>,
Reactions <dbl>, Avg Reactions <dbl>, Post Views <dbl>,
Avg Post Views <dbl>, Total Views <dbl>, Avg Total Views <dbl>,
Total Views for all Crossposts <dbl>, 38 / 45

Grey area tools

39 / 45

Grey area tools
As Bruns (2019) noted, "break[ing] the rules" (p. 16) is one way to deal with an increasingly restrictive API
landscape. For most social media platforms, there are several 'uno�cial' tools like TikTok-API or Instaloader to
access (public) data.

These tools often make use of:

Browser emulation
Web scraping
Private APIs

They are often the only viable way for automated data fetching from these platforms. They are also likely
violating the platforms' ToS (but German law may be on your side) and are subject to cease working at a
moment's notice.

Use them if you want and need to, but always have a backup plan available.

40 / 45

https://github.com/davidteather/TikTok-Api
https://instaloader.github.io/
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3491192

Exercise solutions

41 / 45

Exercise solutions
Exercise 1:

ex1_resp <- GET(url = ps_base,
 path = ps_submission,
 query = list(subreddit = "de",
 sort = "asc",
 size = 50)
)

42 / 45

Exercise solutions
Exercise 2:

Get first 100 comments
ex2_resp_1 <- GET(url = ps_base,
 path = ps_comment,
 query = list(q = "lol",
 subreddit = "politics",
 size = 100))
ex2_data_1 <- content(ex2_resp_1)$data

Extract timestamp of last result
last_comment_timestamp <- tail(ex2_data_1, 1)[[1]]$created_utc

ex2_resp_2 <- GET(url = ps_base,
 path = ps_comment,
 query = list(q = "lol",
 subreddit = "politics",
 size = 100,
 before = last_comment_timestamp))

(Note that to make sure we do not miss any comments posted at the same time, we could add +1 to the
last_comment_timestamp and then �lter out eventual duplicates.) 43 / 45

Exercise solutions
Exercise 3:

candidates <- c("ABaerbock", "ArminLaschet", "OlafScholz")
timelines <- get_timelines(candidates, n = 500)
favs <- get_favorites(candidates, n = 500)

(Note that the favs tibble contains one additional variable, indicating favorited_by)

44 / 45

Thanks
Credits:

Slides created with xaringan
Title image by Tracy Le Blank / Pexels
Icons by Bootstrap
Coding cat gif by Memecandy/Giphy

45 / 45

https://github.com/yihui/xaringan
https://www.pexels.com/de-de/foto/person-mit-iphone-die-den-ordner-fur-soziale-netzwerke-anzeigt-607812/
https://icons.getbootstrap.com/
https://giphy.com/gifs/memecandy-LmNwrBhejkK9EFP504

